scholarly journals Improving cell distribution on 3D additive manufactured scaffolds through engineered seeding media density and viscosity

2019 ◽  
Author(s):  
M. Cámara-Torres ◽  
R. Sinha ◽  
C. Mota ◽  
L. Moroni

AbstractIn order to ensure the long-term in vitro and in vivo functionality of cell-seeded 3D scaffolds, an effective and reliable method to control cell seeding efficiency and distribution is crucial. Static seeding on 3D additive manufactured scaffolds made of synthetic polymers still remains challenging, as it often results in poor cell attachment, high cell sedimentation and non-uniform cell distribution, due to gravity and to the intrinsic macroporosity and surface chemical properties of the scaffolds. In this study, the bio-inert macromolecules dextran and Ficoll were used for the first time as temporary supplements to alter the viscosity and density of the seeding media, respectively, and improve the static seeding output. The addition of these macromolecules drastically reduced the cell sedimentation velocities, allowing for homogeneous cell attachment to the scaffold filaments. Both dextran- and Ficoll-based seeding methods supported human mesenchymal stromal cells viability and osteogenic differentiation post-seeding. Interestingly, the improved cell distribution led to increased matrix production and mineralization compared to scaffolds seeded by conventional static method. These results suggest a simple and universal method for an efficient seeding of 3D additive manufactured scaffolds, independent of their material and geometrical properties, and applicable for bone and various other tissue regeneration.

2018 ◽  
Vol 19 (7) ◽  
pp. 2059 ◽  
Author(s):  
Anke Lohan ◽  
Benjamin Kohl ◽  
Carola Meier ◽  
Gundula Schulze-Tanzil

Cultivation of autologous human tenocytes in a cell-free xenogenic extracellular tendon matrix (xECM) could present an approach for tendon reconstruction. The aim of this study was to achieve tendon-like tissue formation by implanting decellularized porcine Achilles tendons recellularized with human hamstring tendon-derived tenocytes into nude mice. The structure of decellularized xECM was histologically monitored before being dynamically reseeded with human tenocytes. After 6–12 weeks in vivo, construct quality was monitored using macroscopical and histological scoring systems, vitality assay and quantitative DNA and glycosaminoglycan (GAG) assays. For comparison to tendon xECM, a synthetic polyglycolic acid (PGA) polymer was implanted in a similar manner. Despite decellularized xECM lost some GAGs and structure, it could be recellularized in vitro with human tenocytes, but the cell distribution remained inhomogeneous, with accumulations at the margins of the constructs. In vivo, the xECM constructs revealed in contrast to the PGA no altered size, no inflammation and encapsulation and a more homogeneous cell distribution. xECM reseeded with tenocytes showed superior histological quality than cell-free implanted constructs and contained surviving human cells. Their DNA content after six and 12 weeks in vivo resembled that of native tendon and xECM recellularized in vitro. Results suggest that reseeded decellularized xECM formed a tendon-like tissue in vivo.


2021 ◽  
Vol 15 ◽  
Author(s):  
Muhammad Awais ◽  
Waqar Hussain ◽  
Nouman Rasool ◽  
Yaser Daanial Khan

Background: The uncontrolled growth due to accumulation of genetic and epigenetic changes as a result of loss or reduction in the normal function of Tumor Suppressor Genes (TSGs) and Pro-oncogenes is known as cancer. TSGs control cell division and growth by repairing of DNA mistakes during replication and restrict the unwanted proliferation of a cell or activities, those are the part of tumor production. Objectives: This study aims to propose a novel, accurate, user-friendly model to predict tumor suppressor proteins, which would be freely available to experimental molecular biologists to assist them using in vitro and in vivo studies. Methods: The predictor model has used the input feature vector (IFV) calculated from the physicochemical properties of proteins based on FCNN to compute the accuracy, sensitivity, specificity, and MCC. The proposed model was validated against different exhaustive validation techniques i.e. self-consistency and cross-validation. Results: Using self-consistency, the accuracy is 99%, for cross-validation and independent testing has 99.80% and 100% accuracy respectively. The overall accuracy of the proposed model is 99%, sensitivity value 98% and specificity 99% and F1-score was 0.99. Conclusion: It concludes, the proposed model for prediction of the tumor suppressor proteins can predict the tumor suppressor proteins efficiently, but it still has space for improvements in computational ways as the protein sequences may rapidly increase, day by day.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Enrico Bergamaschi ◽  
Giacomo Garzaro ◽  
Georgia Wilson Jones ◽  
Martina Buglisi ◽  
Michele Caniglia ◽  
...  

Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are erroneously considered as singular material entities. Instead, they should be regarded as a heterogeneous class of materials bearing different properties eliciting peculiar biological outcomes both in vitro and in vivo. Given the pace at which the industrial production of CNTs/CNFs is increasing, it is becoming of utmost importance to acquire comprehensive knowledge regarding their biological activity and their hazardous effects in humans. Animal studies carried out by inhalation showed that some CNTs/CNFs species can cause deleterious effects such as inflammation and lung tissue remodeling. Their physico-chemical properties, biological behavior and biopersistence make them similar to asbestos fibers. Human studies suggest some mild effects in workers handling CNT/CNF. However, owing to their cross-sectional design, researchers have been as yet unable to firmly demonstrate a causal relationship between such an exposure and the observed effects. Estimation of acceptable exposure levels should warrant a proper risk management. The aim of this review is to challenge the conception of CNTs/CNFs as a single, unified material entity and prompt the establishment of standardized hazard and exposure assessment methodologies able to properly feeding risk assessment and management frameworks.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4587
Author(s):  
Fanny d’Orlyé ◽  
Laura Trapiella-Alfonso ◽  
Camille Lescot ◽  
Marie Pinvidic ◽  
Bich-Thuy Doan ◽  
...  

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


2007 ◽  
Vol 82 (5) ◽  
pp. 2056-2064 ◽  
Author(s):  
Luka Čičin-Šain ◽  
Zsolt Ruzsics ◽  
Juergen Podlech ◽  
Ivan Bubić ◽  
Carine Menard ◽  
...  

ABSTRACT Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (ΔM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in ΔM36-infected macrophages and rescued the growth of the mutant. In vivo, ΔM36 infection foci in liver tissue contained significantly more apoptotic hepatocytes and Kupffer cells than did revertant virus foci, and apoptosis occurred during the early phase of virus replication prior to virion assembly. To further delineate the mode of M36 function, we replaced the M36 gene with a dominant-negative FADD (FADDDN) in an MCMV recombinant. FADDDN was expressed in cells infected with the recombinant and blocked the death-receptor pathway, replacing the antiapoptotic function of M36. Most importantly, FADDDN rescued ΔM36 virus replication, both in vitro and in vivo. These findings have identified the biological role of M36 and define apoptosis inhibition as a key determinant of viral fitness.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Huan-Hua Xu ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. Methods Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. Results Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. Conclusions This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.


Development ◽  
1975 ◽  
Vol 33 (1) ◽  
pp. 205-216
Author(s):  
Anne McLaren

1. Of 30 mice born from aggregation of embryos from a multiple recessive strain with F1 embryos carrying the contrasting alleles, 4 females and 20 males proved to be overtly chimaeric. 2. Three XX/XX females, five XY/XY males and eight XY/XX males were identified by chromosome analysis. Thus 50 % of the population analysed were sex chimaeras, and all of these developed as phenotypic males, though one showed evidence of hermaphroditism. 3. In seven XY/XX chimaeras that bred, the genetic component undergoing spermatogenesis coincided in every case with the component identified by chromosome morphology as XY. 4. The F1 component predominated in metaphase plates derived from cultured blood cells. Comparison with direct preparations from bone marrow suggested selection in favour of F1 cells, either through differential proliferation of stem cells in vivo or differential response to phytohaemagglutinin in vitro. 5. In XY/XX males, the percentage of XX cells detected varied from 1 % to 98 % in blood, and from 0 % to 80 % in bone marrow. 6. Of eight ‘single-sex’ chimaeras progeny-tested (three XX/XX, five XY/XY), only one showed evidence of a mixed population of germ cells. The proportion of the two types of progeny varied significantly from litter to litter, but was unrelated to the age of the male.


1991 ◽  
pp. 131-135 ◽  
Author(s):  
C. Mahaza ◽  
R. Robert ◽  
M. Miègeville ◽  
G. Tronchin ◽  
J. M. Senet

Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 1-16
Author(s):  
M. Haq ◽  
S. Suraiya

Marine phospholipids (PLs) rich in ω-3 polyunsaturated fatty acids (ω-3 PUFAs) have drawn keen interest recently among researchers and consumers and could be assumed as a “miracle drug”. Substantial amount of EPA and DHA, amazing and unique chemical properties and super bio-functional activities of marine PLs make it superior compared to terrestrial PLs, which lack long chain ω-3 PUFAs. Many comparative studies revealed that marine PLs showed higher health beneficial activities compared to PLs obtained from land sources. Marine PLs are not only beneficial in containing a high amount of ω-3 PUFAs but also in absorbing and assimilating ω-3 PUFAs in different tissues. Synergistic effects of PL compounds and ω-3 PUFAs in marine PLs showed super bio-functional performances like anti-atherosis and cardioprotective, anti-inflammatory, neuroprotective, immunological, and liver functions. A number of in vivo and in vitro studies on the administration of marine PLs extracted from fishes, mollusks, crustaceans, echinoderms reduced triacylglycerol (TAG) level and enhanced cardioprotective functions, demonstrated anti-inflammatory activity, reduced cell proliferation and tumor, increased cognitive functions and memory, and prevented hepatic damages. Therefore, this review paper provides detailed accounts on the present research status of critical biological and nutritional functions of marine ω-3 PUFAs rich phospholipids focusing on the origin, animal models, treatment, and roles.


Sign in / Sign up

Export Citation Format

Share Document