scholarly journals Quantification of DNA methylation using methylation-sensitive restriction enzymes and multiplex digital PCR

2019 ◽  
Author(s):  
R.J. Nell ◽  
D. van Steenderen ◽  
N.V. Menger ◽  
T.J. Weitering ◽  
M. Versluis ◽  
...  

ABSTRACTEpigenetic regulation is important in human health and disease, but the exact mechanisms remain largely enigmatic. DNA methylation represents one well-studied aspect of epigenetic regulation, but is challenging to quantify accurately. In this study, we introduce a digital approach for the absolute quantification of the amount, density and allele-specificity of DNA methylation. Combining the efficiency of methylation-sensitive restriction enzymes with the quantitative power of digital PCR, DNA methylation is measured accurately without the need to treat the DNA samples with sodium bisulphite. Moreover, as the combination of PCR amplicon and restriction enzyme is flexible, the context and density of DNA methylation can be taken into account. Additionally, by extending the experimental setup to a multiplex digital PCR, methylation markers may be analysed together with physically linked genetic markers to determine the allele-specificity of the methylation. In-silico simulations demonstrated the mathematical validity of the experimental setup. Next the approach was validated in a variety of healthy and malignant reference samples in the context of RASSF1A promotor methylation. RASSF1A is an established tumour suppressor gene, that is aberrantly methylated in many human cancers. A dilution series of well-characterized reference samples cross-validated the sensitivity and dynamic range of the approach. Compared to conventional PCR based methods, digital PCR provides a more accurate and more sensitive approach to quantify DNA methylation. As no sodium bisulphite conversion is needed, also analysis of minute amounts of DNA could be carried out efficiently.

2020 ◽  
Vol 41 (12) ◽  
pp. 2205-2216
Author(s):  
Rogier J. Nell ◽  
Debby Steenderen ◽  
Nino V. Menger ◽  
Thomas J. Weitering ◽  
Mieke Versluis ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wendell Jones ◽  
Binsheng Gong ◽  
Natalia Novoradovskaya ◽  
Dan Li ◽  
Rebecca Kusko ◽  
...  

Abstract Background Oncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance. Results In reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5–100× more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels. Conclusion These new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Peiru Liu ◽  
Jing Zhang ◽  
Duo Du ◽  
Dandan Zhang ◽  
Zelin Jin ◽  
...  

Abstract Background Thoracic aortic dissection (TAD) is a severe disease with limited understandings in its pathogenesis. Altered DNA methylation has been revealed to be involved in many diseases etiology. Few studies have examined the role of DNA methylation in the development of TAD. This study explored alterations of the DNA methylation landscape in TAD and examined the potential role of cell-free DNA (cfDNA) methylation as a biomarker in TAD diagnosis. Results Ascending aortic tissues from TAD patients (Stanford type A; n = 6) and healthy controls (n = 6) were first examined via whole-genome bisulfite sequencing (WGBS). While no obvious global methylation shift was observed, numerous differentially methylated regions (DMRs) were identified, with associated genes enriched in the areas of vasculature and heart development. We further confirmed the methylation and expression changes in homeobox (Hox) clusters with 10 independent samples using bisulfite pyrosequencing and quantitative real-time PCR (qPCR). Among these, HOXA5, HOXB6 and HOXC6 were significantly down-regulated in TAD samples relative to controls. To evaluate cfDNA methylation pattern as a biomarker in TAD diagnosis, cfDNA from TAD patients (Stanford type A; n = 7) and healthy controls (n = 4) were examined by WGBS. A prediction model was built using DMRs identified previously from aortic tissues on methylation data from cfDNA. Both high sensitivity (86%) and specificity (75%) were achieved in patient classification (AUC = 0.96). Conclusions These findings showed an altered epigenetic regulation in TAD patients. This altered epigenetic regulation and subsequent altered expression of genes associated with vasculature and heart development, such as Hox family genes, may contribute to the loss of aortic integrity and TAD pathogenesis. Additionally, the cfDNA methylation in TAD was highly disease specific, which can be used as a non-invasive biomarker for disease prediction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4247
Author(s):  
Andrea Martisova ◽  
Jitka Holcakova ◽  
Nasim Izadi ◽  
Ravery Sebuyoya ◽  
Roman Hrstka ◽  
...  

DNA methylation, i.e., addition of methyl group to 5′-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Kevin Kuhlmann ◽  
Melanie Cieselski ◽  
Julia Schumann

Abstract Background In the present study, two distinct PCR methods were used for the quantification of genetic material and their results were compared: real-time-PCR (qPCR; relative quantification) and droplet digital PCR (ddPCR; absolute quantification). The comparison of the qPCR and the ddPCR was based on a stimulation approach of microvascular endothelial cells in which the effect of a pro-inflammatory milieu on the expression of vasoactive receptors was investigated. Results There was consistency in directions of effects for the majority of genes tested. With regard to the indicated dimension of the effects, the overall picture was more differentiated. It was striking that deviations were more pronounced if the measured values were on the extreme edges of the dynamic range of the test procedures. Conclusions To obtain valid and reliable results, dilution series are recommended, which should be carried out initially. In case of ddPCR the number of copies per µl should be adjusted to the low three-digit range. With regard to qPCR it is essential that the stability and reliability of the reference genes used is guaranteed. Here, ddPCR offers the advantage that housekeeping genes are not required. Furthermore, an absolute quantification of the sample can be easily performed by means of ddPCR. Before using ddPCR, however, care should be taken to optimize the experimental conditions. Strict indications for this methodology should also be made with regard to economic and timing factors.


2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Ruth E Board ◽  
Lucy Knight ◽  
Alastair Greystoke ◽  
Fiona H Blackhall ◽  
Andrew Hughes ◽  
...  

Free circulating DNA, which is thought to be derived from the primary tumour, can be detected in the blood of patients with cancer. Detection of genetic and epigenetic alteration in this tumour DNA offers a potential source of development of prognostic and predictive biomarkers for cancer. One such change is DNA methylation of the promotor region of tumour suppressor genes. This causes down regulation of tumour suppressor gene expression, a frequent event in carcinogenesis. Hypermethylation of the promotor region of a number of genes has been detected in many tumour types and more recently these changes have been detected in circulating tumour DNA. This review will summarise the literature detailing DNA methylation in circulating tumour DNA and discuss some of the current controversies and technical challenges facing its use as a potential biomarker for cancer.


2021 ◽  
Author(s):  
Guillermo Barturen ◽  
Elena Carnero-Montoro ◽  
Manuel Martínez-Bueno ◽  
Silvia Rojo-Rello ◽  
Beatriz Sobrino ◽  
...  

SARS-CoV-2 causes a severe inflammatory syndrome called COVID-19 that primarily affects the lungs leading, in many cases, to bilateral pneumonia, severe dyspnea and in ~5% of the cases, death. The mechanisms through which this occurs are still being elucidated. A strong relationship between COVID-19 progression and autoimmune disorder pathogenesis has been identified as an exacerbated interferon immune response or an inflammatory condition mediated by an increase of pro-inflammatory cytokine production, among other. DNA methylation is known to regulate immune response processes, thus COVID-19 progression might be also conditioned by DNA methylation changes not studied in depth, yet. Thus, here an epigenome-wide DNA methylation analysis combined with DNA genotyping for 101 and 473 SARS-CoV-2 negative and positive lab tested individuals, respectively, from two different clinical centers is presented in order to evaluate the implications of the epigenetic regulation in the course of COVID-19 disease. The results reveal the existence of an epigenome regulation of functional pathways associated with the COVID-19 progression, such as innate interferon responses, hyperactivation of B and T lymphocytes, phagocytosis and innate C-type lectin DC-SIGN. These DNA methylation changes were found to be regulated by genetic loci associated with COVID-19 susceptibility and autoimmune disease. In mild COVID-19 patients hypomethylation of CpGs regulating genes within the AKT signaling pathway, and the hypermethylation of a group of CpGs related to environmental traits regulating IL-6 expression via the transcription factor CEBP, discriminate these individuals from those who develop the most critical outcomes of the disease. Thus, the analysis points out to an environmental contribution that mediated by DNA methylation changes in SARS-CoV-2 positive patients, might be playing a role in triggering the cytokine storm described in the most severe cases. In addition, important differences were found in terms of epigenetic regulation between severe and mild cases when compared with systemic autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document