scholarly journals A commonly used photosynthetic inhibitor fails to block electron flow to photosystem I in intact systems

2019 ◽  
Author(s):  
Duncan Fitzpatrick ◽  
Eva-Mari Aro ◽  
Arjun Tiwari

AbstractIn plant science, 2,4-dinitrophenylether of iodonitrothymol (DNP-INT) is frequently used as an alternative to 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone (DBMIB) to examine the capacity of plastoquinol and semiquinone to reduce O2. DNP-INT is considered an effective inhibitor of the photosynthetic electron transfer chain (PETC) through its binding at the Q0 site of Cyt-b6f. The binding and action of DNP-INT has been previously characterized spectroscopically in purified Cyt-b6f complex reconstituted with Plastocyanin, PSII membranes and plastoquinone, as well as in isolated thylakoids based on its property to block MV-mediated O2 consumption. Contrary to the conclusions made from these experiments, we observed clear reduction of P700+ in samples incubated with DNP-INT during our recent investigation into the sites of oxygen consumption in isolated thylakoids. Therefore, we carried out an extensive investigation of DNP-INT’s chemical efficacy in isolated thylakoids and intact leaves. This included examination of its capacity to block the PETC before PSI, and therefore its inhibition of CO2 fixation. P700 redox kinetics were measured using Dual-PAM whilst Membrane Inlet Mass Spectrometry (MIMS) was used for simultaneous determination of the rates of O2 evolution and O2 consumption in isolated thylakoids and CO2 fixation in intact leaves, using two stable isotopes of oxygen (16O2,18O2) and CO2 (12C,13C), respectively. Based on these investigations we confirmed that DNP-INT is unable to completely block the PETC and CO2 fixation, therefore its use may produce artefacts if applied to isolated thylakoids or intact cells, especially when determining the locations of reactive oxygen species formation in the photosynthetic apparatus.

2012 ◽  
Vol 10 (3) ◽  
pp. 117-128 ◽  
Author(s):  
Ryan J. Bell ◽  
William B. Savidge ◽  
Strawn K. Toler ◽  
Robert H. Byrne ◽  
R. Timothy Short

1999 ◽  
Vol 190 (2) ◽  
pp. 183-194 ◽  
Author(s):  
Botond Bánfi ◽  
Jacques Schrenzel ◽  
Oliver Nüsse ◽  
Daniel P. Lew ◽  
Erzsébet Ligeti ◽  
...  

Efficient mechanisms of H+ ion extrusion are crucial for normal NADPH oxidase function. However, whether the NADPH oxidase—in analogy with mitochondrial cytochromes—has an inherent H+ channel activity remains uncertain: electrophysiological studies did not find altered H+ currents in cells from patients with chronic granulomatous disease (CGD), challenging earlier reports in intact cells. In this study, we describe the presence of two different types of H+ currents in human eosinophils. The “classical” H+ current had properties similar to previously described H+ conductances and was present in CGD cells. In contrast, the “novel” type of H+ current had not been described previously and displayed unique properties: (a) it was absent in cells from gp91- or p47-deficient CGD patients; (b) it was only observed under experimental conditions that allowed NADPH oxidase activation; (c) because of its low threshold of voltage activation, it allowed proton influx and cytosolic acidification; (d) it activated faster and deactivated with slower and distinct kinetics than the classical H+ currents; and (e) it was ∼20-fold more sensitive to Zn2+ and was blocked by the histidine-reactive agent, diethylpyrocarbonate (DEPC). In summary, our results demonstrate that the NADPH oxidase or a closely associated protein provides a novel type of H+ conductance during phagocyte activation. The unique properties of this conductance suggest that its physiological function is not restricted to H+ extrusion and repolarization, but might include depolarization, pH-dependent signal termination, and determination of the phagosomal pH set point.


2019 ◽  
Vol 46 (6) ◽  
pp. 555 ◽  
Author(s):  
Milena T. Gerganova ◽  
Aygyun K. Faik ◽  
Maya Y. Velitchkova

The kinetics of photoinhibition in detached leaves from tomato plants (Solanium lycopersicum L. cv. M82) grown for 6 days under different combinations of optimal and moderately high temperature and optimal and high light intensity were studied. The inhibition of PSII was evaluated by changes in maximal quantum yield, the coefficient of photochemical quenching and the quantum yield of PSII. The changes of PSI activity was estimated by the redox state of P700. The involvement of different possible protective processes was checked by determination of nonphotochemical quenching and cyclic electron flow around PSI. To evaluate to what extent the photosynthetic apparatus and its response to high light treatment was affected by growth conditions, the kinetics of photoinhibition in isolated thylakoid membranes were also studied. The photochemical activities of both photosystems and changes in the energy distribution and interactions between them were evaluated by means of a Clark electrode and 77 K fluorescence analysis. The data showed an increased tolerance to photoinhibition in plants grown under a combination of moderately high temperature and light intensity, which was related to the stimulation of cyclic electron flow, PSI activity and rearrangements of pigment–protein complexes, leading to a decrease in the excitation energy delivered to PSII.


1982 ◽  
Vol 37 (10) ◽  
pp. 889-897 ◽  
Author(s):  
H. K. Lichtenthaler ◽  
D. Meier ◽  
G. Retzlaff ◽  
R. Hamm

Abstract The inhibition of photosynthetic CO2-assimilation and of the variable chlorophyll fluorescence as well as uptake and transport of 14C-labelled bentazon and the possibilities for a herbicideinduced shade-type modification of the photosynthetic apparatus were investigated in bentazonsensitive weeds (Galium, Sinapis, Raphanus) and in the tolerant crop plants wheat and maize.1. In weeds the depression of photosynthetic CO2-assimilation is irreversible, whereas tolerant plants recover due to the metabolization of the active herbicide.2. A lower rate of uptake and transport of bentazon associated with its fast metabolization is the reason for the tolerance of crop plants towards bentazon.3. The transport of [14C]bentazon proceeds in the tracheary elements of the xylem. Uptake and transport of bentazon in the weeds are light dependent.4. The loss of variable fluorescence (Kautsky effect) in the leaves after root application o f bentazon proceeds much faster at high-light than at low light conditions and confirms the light-dependency of the bentazon transport.5. In the sensitive dicot weeds bentazon not only inhibits photosynthetic electron flow and depresses CO2-fixation but also induces the formation of shade-type chloroplasts which are less efficient in photosynthetic quantum conversion. This bentazon-induced modification of the photosynthetic apparatus (e.g. changes in ultrastructure, pigment ratios, and levels of chloro-phyll-proteins) contributes to the effectiveness of bentazon as a herbicide.


2019 ◽  
Vol 61 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Alessandra Bellan ◽  
Francesca Bucci ◽  
Giorgio Perin ◽  
Alessandro Alboresi ◽  
Tomas Morosinotto

Abstract In nature, photosynthetic organisms are exposed to highly dynamic environmental conditions where the excitation energy and electron flow in the photosynthetic apparatus need to be continuously modulated. Fluctuations in incident light are particularly challenging because they drive oversaturation of photosynthesis with consequent oxidative stress and photoinhibition. Plants and algae have evolved several mechanisms to modulate their photosynthetic machinery to cope with light dynamics, such as thermal dissipation of excited chlorophyll states (non-photochemical quenching, NPQ) and regulation of electron transport. The regulatory mechanisms involved in the response to light dynamics have adapted during evolution, and exploring biodiversity is a valuable strategy for expanding our understanding of their biological roles. In this work, we investigated the response to fluctuating light in Nannochloropsis gaditana, a eukaryotic microalga of the phylum Heterokonta originating from a secondary endosymbiotic event. Nannochloropsis gaditana is negatively affected by light fluctuations, leading to large reductions in growth and photosynthetic electron transport. Exposure to light fluctuations specifically damages photosystem I, likely because of the ineffective regulation of electron transport in this species. The role of NPQ, also assessed using a mutant strain specifically depleted of this response, was instead found to be minor, especially in responding to the fastest light fluctuations.


Sign in / Sign up

Export Citation Format

Share Document