scholarly journals A key regulatory protein for flagellum length control in stable flagella

2019 ◽  
Author(s):  
Madison Atkins ◽  
Jiří Týč ◽  
Shahaan Shafiq ◽  
Manu Ahmed ◽  
Eloïse Bertiaux ◽  
...  

SummaryCilia and flagella are highly conserved microtubule-based organelles that have important roles in cell motility and sensing [1]. They can be highly dynamic and short lived such as primary cilia or Chlamydomonas [2] or very stable and long lived such as those in spermatozoa [3] photoreceptors [4] or the flagella of many protist cells [3,4]. Although there is a wide variation in length between cell types, there is generally a defined length for a given cell type [1]. Many unicellular flagellated and ciliated organisms have an additional challenge as they must maintain flagella/cilia at a defined length whilst also growing new flagella/cilia in the same cell. It is not currently understood how this is achieved. A grow-and-lock model was proposed for the maintenance of stable flagella where a molecular lock is applied to prevent flagellum length change after assembly [5]. The molecular mechanisms of how this lock operates are unknown, but could be important in cells where an existing flagellum must be maintained whilst a new flagellum assembles. Here we show that Cep164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. It is only localised on the transition fibres of basal bodies of fully assembled flagella and missing from assembling flagella. In fact, basal bodies only acquire Cep164C in the third cell cycle after they assemble in trypanosomes. Depletion leads to dysregulation of flagellum growth with both longer and shorter flagella; consistent with defects in a flagellum locking mechanism. By controlling delivery of components into the old assembled flagellum, maintenance of stable flagella can occur but limits further growth. This offers an important explanation for how many eukaryotic unicellular cells maintain their existing flagella whilst growing new ones before these cells divide. This work also reveals additional regulatory roles for Cep164 in eukaryotic organisms.

2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Madison Atkins ◽  
Jiří Týč ◽  
Shahaan Shafiq ◽  
Manu Ahmed ◽  
Eloïse Bertiaux ◽  
...  

Cilia and flagella are required for cell motility and sensing the external environment and can vary in both length and stability. Stable flagella maintain their length without shortening and lengthening and are proposed to “lock” at the end of growth, but molecular mechanisms for this lock are unknown. We show that CEP164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. CEP164C localizes to mature basal bodies of fully assembled old flagella, but not to growing new flagella, and basal bodies only acquire CEP164C in the third cell cycle after initial assembly. Depletion of CEP164C leads to dysregulation of flagellum growth, with continued growth of the old flagellum, consistent with defects in a flagellum locking mechanism. Inhibiting cytokinesis results in CEP164C acquisition on the new flagellum once it reaches the old flagellum length. These results provide the first insight into the molecular mechanisms regulating flagella growth in cells that must maintain existing flagella while growing new flagella.


2011 ◽  
Vol 39 (5) ◽  
pp. 1120-1125 ◽  
Author(s):  
Kristen J. Verhey ◽  
John Dishinger ◽  
Hooi Lynn Kee

Cilia and flagella play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in ciliary assembly and/or function can lead to a range of human diseases, collectively known as the ciliopathies, including polycystic kidney, liver and pancreatic diseases, sterility, obesity, situs inversus, hydrocephalus and retinal degeneration. A basic understanding of how cilia form and function is essential for deciphering ciliopathies and generating therapeutic treatments. The cilium is a unique compartment that contains a distinct complement of protein and lipid. However, the molecular mechanisms by which soluble and membrane protein components are targeted to and trafficked into the cilium are not well understood. Cilia are generated and maintained by IFT (intraflagellar transport) in which IFT cargoes are transported along axonemal microtubules by kinesin and dynein motors. A variety of genetic, biochemical and cell biological approaches has established the heterotrimeric kinesin-2 motor as the ‘core’ IFT motor, whereas other members of the kinesin-2, kinesin-3 and kinesin-4 families function as ‘accessory’ motors for the transport of specific cargoes in diverse cell types. Motors of the kinesin-9 and kinesin-13 families play a non-IFT role in regulating ciliary beating or axonemal length, respectively. Entry of kinesin motors and their cargoes into the ciliary compartment requires components of the nuclear import machinery, specifically importin-β2 (transportin-1) and Ran-GTP (Ran bound to GTP), suggesting that similar mechanisms may regulate entry into the nuclear and ciliary compartments.


2015 ◽  
Vol 208 (6) ◽  
pp. 693-701 ◽  
Author(s):  
Suzanna L. Prosser ◽  
Ciaran G. Morrison

Primary cilia are antenna-like sensory microtubule structures that extend from basal bodies, plasma membrane–docked mother centrioles. Cellular quiescence potentiates ciliogenesis, but the regulation of basal body formation is not fully understood. We used reverse genetics to test the role of the small calcium-binding protein, centrin2, in ciliogenesis. Primary cilia arise in most cell types but have not been described in lymphocytes. We show here that serum starvation of transformed, cultured B and T cells caused primary ciliogenesis. Efficient ciliogenesis in chicken DT40 B lymphocytes required centrin2. We disrupted CETN2 in human retinal pigmented epithelial cells, and despite having intact centrioles, they were unable to make cilia upon serum starvation, showing abnormal localization of distal appendage proteins and failing to remove the ciliation inhibitor CP110. Knockdown of CP110 rescued ciliation in CETN2-deficient cells. Thus, centrin2 regulates primary ciliogenesis through controlling CP110 levels.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9799
Author(s):  
Priyanka Upadhyai ◽  
Vishal Singh Guleria ◽  
Prajna Udupa

Primary cilia are non-motile sensory antennae present on most vertebrate cell surfaces. They serve to transduce and integrate diverse external stimuli into functional cellular responses vital for development, differentiation and homeostasis. Ciliary characteristics, such as length, structure and frequency are often tailored to distinct differentiated cell states. Primary cilia are present on a variety of skeletal cell-types and facilitate the assimilation of sensory cues to direct skeletal development and repair. However, there is limited knowledge of ciliary variation in response to the activation of distinct differentiation cascades in different skeletal cell-types. C3H10T1/2, MC3T3-E1 and ATDC5 cells are mesenchymal stem cells, preosteoblast and prechondrocyte cell-lines, respectively. They are commonly employed in numerous in vitro studies, investigating the molecular mechanisms underlying osteoblast and chondrocyte differentiation, skeletal disease and repair. Here we sought to evaluate the primary cilia length and frequencies during osteogenic differentiation in C3H10T1/2 and MC3T3-E1 and chondrogenic differentiation in ATDC5 cells, over a period of 21 days. Our data inform on the presence of stable cilia to orchestrate signaling and dynamic alterations in their features during extended periods of differentiation. Taken together with existing literature these findings reflect the occurrence of not only lineage but cell-type specific variation in ciliary attributes during differentiation. These results extend our current knowledge, shining light on the variabilities in primary cilia features correlated with distinct differentiated cell phenotypes. It may have broader implications in studies using these cell-lines to explore cilia dependent cellular processes and treatment modalities for skeletal disorders centered on cilia modulation.


2021 ◽  
Vol 118 (13) ◽  
pp. e2021942118
Author(s):  
Myoung Sup Shim ◽  
April Nettesheim ◽  
Angela Dixon ◽  
Paloma B. Liton

Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1573-1578 ◽  
Author(s):  
I Yamashita ◽  
S Katamine ◽  
R Moriuchi ◽  
Y Nakamura ◽  
T Miyamoto ◽  
...  

Abstract Interleukin-6 (IL-6) is a multifunctional cytokine that regulates both humoral and cellular immune responses. Accumulating evidence suggests that the infection of T cells and other cell types with human T- lymphotropic virus type 1 (HTLV-1) results in the constitutive expression of IL-6. However, the underlying molecular mechanisms are little understood. When a reporter plasmid, pIL6-CAT-E3, in which the human IL-6 enhancer/promoter region from -630 to +14 was linked to the bacterial chloramphenicol acetyltransferase (CAT) gene, was transfected, HTLV-1-infected but not -uninfected T-cell lines activated the IL-6 promoter. This indicated the presence of a factor transactivating the IL-6 gene in the infected cells. To evaluate the involvement of the HTLV-1-encoded transacting factor (Tax) in this transactivation, we examined the effect of transient cotransfection with the Tax-expression plasmid, pMAX-Neo, on the transcription from the IL-6 promoter by use of COS1 cells. The cotransfected COS1 has about six-times greater the CAT activity than that transfected with pIL6-CAT-E3 alone. The analysis of a series of deletions of the IL-6 promoter suggested that the region (-105/-47) containing a NF kappa B site was crucial for the Tax responsiveness. We further examined the effect of Tax on endogenous IL-6 gene expression using the Jurkat clone, JPX-9, stably transfected with pMAX-Neo. JPX-9 accumulated steady state transcripts of the endogenous IL-6 gene in response to the induction of Tax expression. Our findings indicate an important role of the Tax protein in the expression of IL-6 in cells infected with HTLV-1.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1573-1578 ◽  
Author(s):  
I Yamashita ◽  
S Katamine ◽  
R Moriuchi ◽  
Y Nakamura ◽  
T Miyamoto ◽  
...  

Interleukin-6 (IL-6) is a multifunctional cytokine that regulates both humoral and cellular immune responses. Accumulating evidence suggests that the infection of T cells and other cell types with human T- lymphotropic virus type 1 (HTLV-1) results in the constitutive expression of IL-6. However, the underlying molecular mechanisms are little understood. When a reporter plasmid, pIL6-CAT-E3, in which the human IL-6 enhancer/promoter region from -630 to +14 was linked to the bacterial chloramphenicol acetyltransferase (CAT) gene, was transfected, HTLV-1-infected but not -uninfected T-cell lines activated the IL-6 promoter. This indicated the presence of a factor transactivating the IL-6 gene in the infected cells. To evaluate the involvement of the HTLV-1-encoded transacting factor (Tax) in this transactivation, we examined the effect of transient cotransfection with the Tax-expression plasmid, pMAX-Neo, on the transcription from the IL-6 promoter by use of COS1 cells. The cotransfected COS1 has about six-times greater the CAT activity than that transfected with pIL6-CAT-E3 alone. The analysis of a series of deletions of the IL-6 promoter suggested that the region (-105/-47) containing a NF kappa B site was crucial for the Tax responsiveness. We further examined the effect of Tax on endogenous IL-6 gene expression using the Jurkat clone, JPX-9, stably transfected with pMAX-Neo. JPX-9 accumulated steady state transcripts of the endogenous IL-6 gene in response to the induction of Tax expression. Our findings indicate an important role of the Tax protein in the expression of IL-6 in cells infected with HTLV-1.


2011 ◽  
Vol 193 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Tetsuo Kobayashi ◽  
Brian D. Dynlacht

The role of centrioles changes as a function of the cell cycle. Centrioles promote formation of spindle poles in mitosis and act as basal bodies to assemble primary cilia in interphase. Stringent regulations govern conversion between these two states. Although the molecular mechanisms have not been fully elucidated, recent findings have begun to shed light on pathways that regulate the conversion of centrioles to basal bodies and vice versa. Emerging studies also provide insights into how defects in the balance between centrosome and cilia function could promote ciliopathies and cancer.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Shatanik Mukherjee ◽  
Vera Jansen ◽  
Jan F Jikeli ◽  
Hussein Hamzeh ◽  
Luis Alvarez ◽  
...  

The cellular messenger cAMP regulates multiple cellular functions, including signaling in cilia and flagella. The cAMP dynamics in these subcellular compartments are ill-defined. We introduce a novel FRET-based cAMP biosensor with nanomolar sensitivity that is out of reach for other sensors. To measure cAMP dynamics in the sperm flagellum, we generated transgenic mice and reveal that the hitherto methods determining total cAMP levels do not reflect changes in free cAMP levels. Moreover, cAMP dynamics in the midpiece and principal piece of the flagellum are distinctively different. The sole cAMP source in the flagellum is the soluble adenylate cyclase (SACY). Although bicarbonate-dependent SACY activity requires Ca2+, basal SACY activity is suppressed by Ca2+. Finally, we also applied the sensor to primary cilia. Our new cAMP biosensor features unique characteristics that allow gaining new insights into cAMP signaling and unravel the molecular mechanisms underlying ciliary function in vitro and in vivo.


2004 ◽  
Vol 166 (5) ◽  
pp. 637-643 ◽  
Author(s):  
Agata Jurczyk ◽  
Adam Gromley ◽  
Sambra Redick ◽  
Jovenal San Agustin ◽  
George Witman ◽  
...  

Primary cilia are nonmotile microtubule structures that assemble from basal bodies by a process called intraflagellar transport (IFT) and are associated with several human diseases. Here, we show that the centrosome protein pericentrin (Pcnt) colocalizes with IFT proteins to the base of primary and motile cilia. Immunogold electron microscopy demonstrates that Pcnt is on or near basal bodies at the base of cilia. Pcnt depletion by RNA interference disrupts basal body localization of IFT proteins and the cation channel polycystin-2 (PC2), and inhibits primary cilia assembly in human epithelial cells. Conversely, silencing of IFT20 mislocalizes Pcnt from basal bodies and inhibits primary cilia assembly. Pcnt is found in spermatocyte IFT fractions, and IFT proteins are found in isolated centrosome fractions. Pcnt antibodies coimmunoprecipitate IFT proteins and PC2 from several cell lines and tissues. We conclude that Pcnt, IFTs, and PC2 form a complex in vertebrate cells that is required for assembly of primary cilia and possibly motile cilia and flagella.


Sign in / Sign up

Export Citation Format

Share Document