scholarly journals Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex

2008 ◽  
Vol 22 (17) ◽  
pp. 2370-2384 ◽  
Author(s):  
M. Lange ◽  
B. Kaynak ◽  
U. B. Forster ◽  
M. Tonjes ◽  
J. J. Fischer ◽  
...  
2019 ◽  
Vol 116 (33) ◽  
pp. 16641-16650 ◽  
Author(s):  
Wen-Feng Nie ◽  
Mingguang Lei ◽  
Mingxuan Zhang ◽  
Kai Tang ◽  
Huan Huang ◽  
...  

Active DNA demethylation is critical for controlling the DNA methylomes in plants and mammals. However, little is known about how DNA demethylases are recruited to target loci, and the involvement of chromatin marks in this process. Here, we identify 2 components of the SWR1 chromatin-remodeling complex, PIE1 and ARP6, as required for ROS1-mediated DNA demethylation, and discover 2 SWR1-associated bromodomain-containing proteins, AtMBD9 and nuclear protein X1 (NPX1). AtMBD9 and NPX1 recognize histone acetylation marks established by increased DNA methylation 1 (IDM1), a known regulator of DNA demethylation, redundantly facilitating H2A.Z deposition at IDM1 target loci. We show that at some genomic regions, H2A.Z and DNA methylation marks coexist, and H2A.Z physically interacts with ROS1 to regulate DNA demethylation and antisilencing. Our results unveil a mechanism through which DNA demethylases can be recruited to specific target loci exhibiting particular histone marks, providing a conceptual framework to understand how chromatin marks regulate DNA demethylation.


2019 ◽  
Vol 10 (1) ◽  
pp. 387-400 ◽  
Author(s):  
Richard Bowman ◽  
Nathan Balukoff ◽  
Amy Clemons ◽  
Emily Koury ◽  
Talitha Ford ◽  
...  

Akirin, a conserved metazoan protein, functions in muscle development in flies and mice. However, this was only tested in the rodent and fly model systems. Akirin was shown to act with chromatin remodeling complexes in transcription and was established as a downstream target of the NFκB pathway. Here we show a role for Caenorhabditis elegans Akirin/AKIR-1 in the muscle and body length regulation through a different pathway. Akirin localizes to somatic tissues throughout the body of C. elegans, including muscle nuclei. In agreement with its role in other model systems, Akirin loss of function mutants exhibit defects in muscle development in the embryo, as well as defects in movement and maintenance of muscle integrity in the C. elegans adult. We also have determined that Akirin acts downstream of the TGF-β Sma/Mab signaling pathway in controlling body size. Moreover, we found that the loss of Akirin resulted in an increase in autophagy markers, similar to mutants in the TGF-β Sma/Mab signaling pathway. In contrast to what is known in rodent and fly models, C. elegans Akirin does not act with the SWI/SNF chromatin-remodeling complex, and is instead involved with the NuRD chromatin remodeling complex in both movement and regulation of body size. Our studies define a novel developmental role (body size) and a new pathway (TGF-β Sma/Mab) for Akirin function, and confirmed its evolutionarily conserved function in muscle development in a new organism.


2006 ◽  
Vol 5 (10) ◽  
pp. 1738-1747 ◽  
Author(s):  
Mark Chandy ◽  
José L. Gutiérrez ◽  
Philippe Prochasson ◽  
Jerry L. Workman

ABSTRACT SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex.


2019 ◽  
Author(s):  
Magdalena E. Potok ◽  
Yafei Wang ◽  
Linhao Xu ◽  
Zhenhui Zhong ◽  
Wanlu Liu ◽  
...  

AbstractDeposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here identify interacting partners of a conserved Arabidopsis SWR1 subunit, ACTIN-RELATED PROTEIN 6 (ARP6). We isolated nine predicted components, and identified additional interactors implicated in histone acetylation and chromatin biology. One of the novel interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacted with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 was required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 was preferentially bound to nucleosome-depleted regions at the 5’ ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 520
Author(s):  
Wenfeng Nie ◽  
Jinyu Wang

As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsis thaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Zhijiang Yan ◽  
Kaitlin McKernan ◽  
Tommy O’Haren ◽  
...  

AbstractCell type-specific enhancers are activated by coordinated actions of lineage-determining transcription factors (LDTFs) and chromatin regulators. The SWI/SNF chromatin remodeling complex BAF and the histone H3K4 methyltransferase MLL4 (KMT2D) are both implicated in enhancer activation. However, the interplay between BAF and MLL4 in enhancer activation remains unclear. Using adipogenesis as a model system, we identify BAF as the major SWI/SNF complex that colocalizes with MLL4 and LDTFs on active enhancers and is required for cell differentiation. In contrast, the promoter enriched SWI/SNF complex PBAF is dispensable for adipogenesis. By depleting BAF subunits SMARCA4 (BRG1) and SMARCB1 (SNF5) as well as MLL4 in cells, we show that BAF and MLL4 reciprocally regulate each other’s binding on active enhancers before and during adipogenesis. By focusing on enhancer activation by the adipogenic pioneer transcription factor C/EBPβ without inducing cell differentiation, we provide direct evidence for an interdependent relationship between BAF and MLL4 in activating cell type-specific enhancers. Together, these findings reveal a positive feedback between BAF and MLL4 in promoting LDTF-dependent activation of cell type-specific enhancers.


2014 ◽  
Vol 42 (14) ◽  
pp. 9074-9086 ◽  
Author(s):  
Ivelina Vassileva ◽  
Iskra Yanakieva ◽  
Michaela Peycheva ◽  
Anastas Gospodinov ◽  
Boyka Anachkova

Sign in / Sign up

Export Citation Format

Share Document