X-ray photoemission spectroscopy characterization of the electrode-ferroelectric interfaces inPt/Bi4Ti3O12/PtandPt/Bi3.25La0.75Ti3O12/Ptcapacitors: Possible influence of defect structure on fatigue properties

2003 ◽  
Vol 68 (1) ◽  
Author(s):  
M.-W. Chu ◽  
M. Ganne ◽  
M. T. Caldes ◽  
E. Gautier ◽  
L. Brohan
2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2058
Author(s):  
Jordi Fraxedas ◽  
Antje Vollmer ◽  
Norbert Koch ◽  
Dominique de Caro ◽  
Kane Jacob ◽  
...  

The metallic and semiconducting character of a large family of organic materials based on the electron donor molecule tetrathiafulvalene (TTF) is rooted in the partial oxidation (charge transfer or mixed valency) of TTF derivatives leading to partially filled molecular orbital-based electronic bands. The intrinsic structure of such complexes, with segregated donor and acceptor molecular chains or planes, leads to anisotropic electronic properties (quasi one-dimensional or two-dimensional) and morphology (needle-like or platelet-like crystals). Recently, such materials have been synthesized as nanoparticles by intentionally frustrating the intrinsic anisotropic growth. X-ray photoemission spectroscopy (XPS) has emerged as a valuable technique to characterize the transfer of charge due to its ability to discriminate the different chemical environments or electronic configurations manifested by chemical shifts of core level lines in high-resolution spectra. Since the photoemission process is inherently fast (well below the femtosecond time scale), dynamic processes can be efficiently explored. We determine here the fingerprint of partial oxidation on the photoemission lines of nanoparticles of selected TTF-based conductors.


2009 ◽  
Vol 156-158 ◽  
pp. 473-476 ◽  
Author(s):  
Sergei K. Brantov ◽  
A.V. Eltzov ◽  
Olga V. Feklisova ◽  
Eugene B. Yakimov

Characterization of defect structure in silicon ribbon grown on carbon foil has been carried out. The structure of grown Si layers and a dislocation density in these layers have been studied using selective chemical etching and the Electron Backscattering Diffraction. It is observed that the layers consist of rather large grains, the majority of which is elongated along the growth direction with a similar surface orientation and with a misorientation angle between neighboring grains of 60º. This means that such grains are separated by the (111) twin boundaries. The dislocation density in different grains is found to vary from 102 to 107cm-2. The energy dispersive X-Ray microanalysis has shown that some twin boundaries are enriched with carbon.


2018 ◽  
Vol 924 ◽  
pp. 15-18
Author(s):  
Masashi Sonoda ◽  
Kentaro Shioura ◽  
Takahiro Nakano ◽  
Noboru Ohtani ◽  
Masakazu Katsuno ◽  
...  

The defect structure at the growth front of 4H-SiC boules grown using the physical vapor transport (PVT) method has been investigated using high resolution x-ray diffraction and x-ray topography. The crystal parameters such as the c-lattice constant exhibited characteristic variations across the growth front, which appeared to be caused by variation in surface morphology of the as-grown surface of the boules rather than the defect structure underneath the surface. X-ray topography also revealed that basal plane dislocations are hardly nucleated at the growth front during PVT growth of 4H-SiC crystals.


2008 ◽  
Vol 22 (15) ◽  
pp. 1487-1495 ◽  
Author(s):  
YEXIA FAN ◽  
HONGTAO LI ◽  
LIANCHENG ZHAO

Congruent Ce (0.1 wt %): Cu (0.05 wt %): LiNbO 3 single crystals doped with 0, 1, 3, 4, 5, 6 mol% MgO respectively were grown by the Czochrolski method in air along the C direction. The inductively coupled plasma optical emission/mass spectrometry (ICP-OE/MS), the X-ray powder diffraction (XRD), the differential thermal analysis (DTA), the ultraviolet-visible (UV-Vis) absorption spectra and the infrared (IR) absorption spectrum were measured and discussed in terms of the spectroscopic characterization and the defect structure of the Mg:Ce:Cu:LiNbO 3 crystals. The results indicated that the Mg:Ce:Cu:LiNbO 3 crystal grown from the congruent composition melt showed large [ Li ]/[ Nb ] ratios, which was closer to stoichiometry, an increase in the Curie temperature and a non-linear shift in the absorption edge with MgO concentration increasing. The threshold concentration of MgO in Mg:Ce:Cu:LiNbO 3 of nearly 5.52 mol% was estimated.


Sign in / Sign up

Export Citation Format

Share Document