scholarly journals Electronic charge redistribution in LaAlO3(001) thin films deposited at SrTiO3(001) substrate: First-principles analysis and the role of stoichiometry

2012 ◽  
Vol 86 (15) ◽  
Author(s):  
Alexandre Sorokine ◽  
Dmitry Bocharov ◽  
Sergei Piskunov ◽  
Vyacheslavs Kashcheyevs
2020 ◽  
Vol 49 (25) ◽  
pp. 8710-8721
Author(s):  
Arbresha Muriqi ◽  
Michael Nolan

First principles investigation of the molecular mechanism of the growth of hybrid organic–inorganic thin films of aluminium alkoxides, known as “alucones”.


1990 ◽  
Vol 213 ◽  
Author(s):  
A.J. Freeman ◽  
T. Hong ◽  
W. Lin ◽  
Jian-Hua Xu

ABSTRACTFirst principles total energy local density method have addressed the problems of (i) bonding, cohesion and phase stability and (ii) the role of ternary additions, anti-phase boundaries (APB's) and other faults in determining the structural, electronic and mechanical properties of aluminum intermetallic alloys. A key goal has been to attempt to understand, at the electronic level, fundamental quantities that may be related to the crucial brittleness vs. ductility issue in high temperature Ni and Ti and other aluminides. Other contrasts between observed ductility properties of related systems (e.g., NiAl and RuAl) are related to their differing electronic and bonding properties, particularly the nature of p-d hybridization and the directional properties of their electronic charge distrubutions - especially for states near the Fermi energy.


2016 ◽  
Vol 93 (22) ◽  
Author(s):  
Guillaume Géranton ◽  
Bernd Zimmermann ◽  
Nguyen H. Long ◽  
Phivos Mavropoulos ◽  
Stefan Blügel ◽  
...  

2009 ◽  
Vol 11 (12) ◽  
pp. 125010 ◽  
Author(s):  
Claudia Ambrosch-Draxl ◽  
Dmitrii Nabok ◽  
Peter Puschnig ◽  
Christian Meisenbichler

Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
L. Tang ◽  
G. Thomas ◽  
M. R. Khan ◽  
S. L. Duan

Cr thin films are often used as underlayers for Co alloy magnetic thin films, such as Co1, CoNi2, and CoNiCr3, for high density longitudinal magnetic recording. It is belived that the role of the Cr underlayer is to control the growth and texture of the Co alloy magnetic thin films, and, then, to increase the in plane coercivity of the films. Although many epitaxial relationship between the Cr underlayer and the magnetic films, such as ﹛1010﹜Co/ {110﹜Cr4, ﹛2110﹜Co/ ﹛001﹜Cr5, ﹛0002﹜Co/﹛110﹜Cr6, have been suggested and appear to be related to the Cr thickness, the texture of the Cr underlayer itself is still not understood very well. In this study, the texture of a 2000 Å thick Cr underlayer on Nip/Al substrate for thin films of (Co75Ni25)1-xTix dc-sputtered with - 200 V substrate bias is investigated by electron microscopy.


Author(s):  
C. Ewins ◽  
J.R. Fryer

The preparation of thin films of organic molecules is currently receiving much attention because of the need to produce good quality thin films for molecular electronics. We have produced thin films of the polycyclic aromatic, perylene C10H12 by evaporation under high vacuum onto a potassium chloride (KCl) substrate. The role of substrate temperature in determining the morphology and crystallography of the films was then investigated by transmission electron microscopy (TEM).The substrate studied was the (001) face of a freshly cleaved crystal of KCl. The temperature of the KCl was controlled by an electric heater or a cold finger. The KCl was heated to 200°C under a vacuum of 10-6 torr and allowed to cool to the desired temperature. The perylene was then evaporated over a period of one minute from a molybdenum boat at a distance of 10cm from the KCl. The perylene thin film was then backed with an amorphous layer of carbon and floated onto copper microscope grids.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Sign in / Sign up

Export Citation Format

Share Document