scholarly journals An Automated Confocal Micro-Extensometer Enables in Vivo Quantification of Mechanical Properties with Cellular Resolution

2017 ◽  
Vol 29 (12) ◽  
pp. 2959-2973 ◽  
Author(s):  
Sarah Robinson ◽  
Michal Huflejt ◽  
Pierre Barbier de Reuille ◽  
Siobhan A. Braybrook ◽  
Martine Schorderet ◽  
...  
2017 ◽  
Author(s):  
Sarah Robinson ◽  
Michal Huflejt ◽  
Pierre Barbier de Reuille ◽  
Siobhan A. Braybrook ◽  
Martine Schorderet ◽  
...  

AbstractHow complex developmental-genetic networks are translated into organs with specific 3D shapes remains an open question. This question is particularly challenging because the elaboration of specific shapes is in essence a question of mechanics. In plants, this means how the genetic circuitry affects the cell wall. The mechanical properties of the wall and their spatial variation are the key factors controlling morphogenesis in plants. However, these properties are difficult to measure and investigating their relation to genetic regulation is particularly challenging. To measure spatial variation of mechanical properties, one must determine the deformation of a tissue in response to a known force with cellular resolution. Here we present an automated confocal micro-extensometer (ACME), which greatly expands the scope of existing methods for measuring mechanical properties. Unlike classical extensometers, ACME is mounted on a confocal microscope and utilizes confocal images to compute the deformation of the tissue directly from biological markers, thus providing cellular scale information and improved accuracy. ACME is suitable for measuring the mechanical responses in live tissue. As a proof of concept we demonstrate that the plant hormone gibberellic acid induces a spatial gradient in mechanical properties along the length of the Arabidopsis hypocotyl.TermsStressis the force acting on the material per unit area.Strainthe relative increase in length of the material, and can be expressed as a percentage change in length.Mechanical propertiesdescribe the stress-strain relationship for a material. If we apply the same force to a material that is twice as thick/stiff? it will deform half as much, if the material is otherwise the same.Elasticelastic materials deform instantly and reversibly.Creepa time-dependent irreversible strain that occurs when a constant force is applied and maintained. Creep is measured using creep tests. A force is applied and maintained for a period of time. The force is removed to reveal the reversible and irreversible deformation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erfan Dashtimoghadam ◽  
Farahnaz Fahimipour ◽  
Andrew N. Keith ◽  
Foad Vashahi ◽  
Pavel Popryadukhin ◽  
...  

AbstractCurrent materials used in biomedical devices do not match tissue’s mechanical properties and leach various chemicals into the body. These deficiencies pose significant health risks that are further exacerbated by invasive implantation procedures. Herein, we leverage the brush-like polymer architecture to design and administer minimally invasive injectable elastomers that cure in vivo into leachable-free implants with mechanical properties matching the surrounding tissue. This strategy allows tuning curing time from minutes to hours, which empowers a broad range of biomedical applications from rapid wound sealing to time-intensive reconstructive surgery. These injectable elastomers support in vitro cell proliferation, while also demonstrating in vivo implant integrity with a mild inflammatory response and minimal fibrotic encapsulation.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1797
Author(s):  
Manuel Toledano ◽  
Marta Vallecillo-Rivas ◽  
María T. Osorio ◽  
Esther Muñoz-Soto ◽  
Manuel Toledano-Osorio ◽  
...  

Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of bone regeneration. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken, focusing on the antibacterial effects, physicochemical and biological properties of Zn-loaded membranes. Bioactivity, bone formation and cytotoxicity were analyzed. Microstructure and mechanical properties of these membranes were also determined. Zn-doped membranes have inhibited in vivo and in vitro bacterial colonization. Zn-alloy and Zn-doped membranes attained good biocompatibility and were found to be non-toxic to cells. The Zn-doped matrices showed feasible mechanical properties, such as flexibility, strength, complex modulus and tan delta. Zn incorporation in polymeric membranes provided the highest regenerative efficiency for bone healing in experimental animals, potentiating osteogenesis, angiogenesis, biological activity and a balanced remodeling. Zn-loaded membranes doped with SiO2 nanoparticles have performed as bioactive modulators provoking an M2 macrophage increase and are a potential biomaterial for promoting bone repair. Zn-doped membranes have promoted pro-healing phenotypes.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 778 ◽  
Author(s):  
Ruben Daum ◽  
Dmitri Visser ◽  
Constanze Wild ◽  
Larysa Kutuzova ◽  
Maria Schneider ◽  
...  

Appropriate mechanical properties and fast endothelialization of synthetic grafts are key to ensure long-term functionality of implants. We used a newly developed biostable polyurethane elastomer (TPCU) to engineer electrospun vascular scaffolds with promising mechanical properties (E-modulus: 4.8 ± 0.6 MPa, burst pressure: 3326 ± 78 mmHg), which were biofunctionalized with fibronectin (FN) and decorin (DCN). Neither uncoated nor biofunctionalized TPCU scaffolds induced major adverse immune responses except for minor signs of polymorph nuclear cell activation. The in vivo endothelial progenitor cell homing potential of the biofunctionalized scaffolds was simulated in vitro by attracting endothelial colony-forming cells (ECFCs). Although DCN coating did attract ECFCs in combination with FN (FN + DCN), DCN-coated TPCU scaffolds showed a cell-repellent effect in the absence of FN. In a tissue-engineering approach, the electrospun and biofunctionalized tubular grafts were cultured with primary-isolated vascular endothelial cells in a custom-made bioreactor under dynamic conditions with the aim to engineer an advanced therapy medicinal product. Both FN and FN + DCN functionalization supported the formation of a confluent and functional endothelial layer.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 569
Author(s):  
Liqin Deng ◽  
Xini Zhang ◽  
Songlin Xiao ◽  
Baofeng Wang ◽  
Weijie Fu

This study aims to explore whether gender differences exist in the architectural and mechanical properties of the medial gastrocnemius–Achilles tendon unit (gMTU) in vivo. Thirty-six healthy male and female adults without training experience and regular exercise habits were recruited. The architectural and mechanical properties of the gMTU were measured via an ultrasonography system and MyotonPRO, respectively. Independent t-tests were utilized to quantify the gender difference in the architectural and mechanical properties of the gMTU. In terms of architectural properties, the medial gastrocnemius (MG)’s pennation angle and thickness were greater in males than in females, whereas no substantial gender difference was observed in the MG’s fascicle length; the males possessed Achilles tendons (ATs) with a longer length and a greater cross-sectional area than females. In terms of mechanical properties, the MG’s vertical stiffness was lower and the MG’s logarithmic decrement was greater in females than in males. Both genders had no remarkable difference in the AT’s vertical stiffness and logarithmic decrement. Gender differences of individuals without training experience and regular exercise habits exist in the architectural and mechanical properties of the gMTU in vivo. The MG’s force-producing capacities, ankle torque, mechanical efficiency and peak power were higher in males than in females. The load-resisting capacities of AT were greater and the MG strain was lesser in males than in females. These findings suggest that males have better physical fitness, speed and performance in power-based sports events than females from the perspective of morphology and biomechanics.


2009 ◽  
Author(s):  
Matteo Rauzi ◽  
Eric P. Mottay ◽  
Thomas Lecuit ◽  
Pierre-François Lenne

Sign in / Sign up

Export Citation Format

Share Document