scholarly journals An automated confocal micro-extensometer enables in vivo quantification of mechanical properties with cellular resolution

2017 ◽  
Author(s):  
Sarah Robinson ◽  
Michal Huflejt ◽  
Pierre Barbier de Reuille ◽  
Siobhan A. Braybrook ◽  
Martine Schorderet ◽  
...  

AbstractHow complex developmental-genetic networks are translated into organs with specific 3D shapes remains an open question. This question is particularly challenging because the elaboration of specific shapes is in essence a question of mechanics. In plants, this means how the genetic circuitry affects the cell wall. The mechanical properties of the wall and their spatial variation are the key factors controlling morphogenesis in plants. However, these properties are difficult to measure and investigating their relation to genetic regulation is particularly challenging. To measure spatial variation of mechanical properties, one must determine the deformation of a tissue in response to a known force with cellular resolution. Here we present an automated confocal micro-extensometer (ACME), which greatly expands the scope of existing methods for measuring mechanical properties. Unlike classical extensometers, ACME is mounted on a confocal microscope and utilizes confocal images to compute the deformation of the tissue directly from biological markers, thus providing cellular scale information and improved accuracy. ACME is suitable for measuring the mechanical responses in live tissue. As a proof of concept we demonstrate that the plant hormone gibberellic acid induces a spatial gradient in mechanical properties along the length of the Arabidopsis hypocotyl.TermsStressis the force acting on the material per unit area.Strainthe relative increase in length of the material, and can be expressed as a percentage change in length.Mechanical propertiesdescribe the stress-strain relationship for a material. If we apply the same force to a material that is twice as thick/stiff? it will deform half as much, if the material is otherwise the same.Elasticelastic materials deform instantly and reversibly.Creepa time-dependent irreversible strain that occurs when a constant force is applied and maintained. Creep is measured using creep tests. A force is applied and maintained for a period of time. The force is removed to reveal the reversible and irreversible deformation.

2006 ◽  
Vol 21 (8) ◽  
pp. 1962-1968 ◽  
Author(s):  
A.K. Bembey ◽  
A.J. Bushby ◽  
A. Boyde ◽  
V.L. Ferguson ◽  
M.L. Oyen

Bone is a composite material with hydroxyapatite mineral, collagen, and water as primary components. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the collagen and mineral at ultrastructural length-scales is poorly understood. The current study examined changes in the mechanical properties of bone as a function of hydration state. Tissues were soaked in different solvents and solutions, with different polarities, to manipulate tissue hydration. Mineralized bone was characterized using nanoindentation creep tests for quantification of both the elastic and viscoelastic mechanical responses, which varied dramatically with tissue bathing solution. The results were considered within the context of solution physical chemistry. Selectively removing and then replacing water provided insights into the ultrastructure of the tissues via the corresponding changes in the experimentally determined mechanical responses.


2017 ◽  
Vol 29 (12) ◽  
pp. 2959-2973 ◽  
Author(s):  
Sarah Robinson ◽  
Michal Huflejt ◽  
Pierre Barbier de Reuille ◽  
Siobhan A. Braybrook ◽  
Martine Schorderet ◽  
...  

2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2019 ◽  
Author(s):  
Chem Int

Aflatoxins (AFTs) are toxic products of fungal metabolism, associated with serious health consequences and substantial economic losses to agriculture, livestock and poultry sectors, particularly in the developing countries. This review outlines the current information on AFTs in terms of historical background, classification, relative occurrence and co-existence with other mycotoxins in various food commodities. The phenomenon of aflatoxin (AFT) biosynthesis has been elucidated with reference to molecular basis, genetic regulation and factors affecting the AFT production. Moreover, the in vivo disposition kinetics, toxicological action and toxico-pathological consequences of AFTs have also been highlighted. Currently employed strategies for the detection and detoxification of AFTs, biomarkers of exposure assessment, potential economic impact and regulatory considerations regarding the AFTs have been emphasized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Skaidre Jankovskaja ◽  
Johan Engblom ◽  
Melinda Rezeli ◽  
György Marko-Varga ◽  
Tautgirdas Ruzgas ◽  
...  

AbstractThe tryptophan to kynurenine ratio (Trp/Kyn) has been proposed as a cancer biomarker. Non-invasive topical sampling of Trp/Kyn can therefore serve as a promising concept for skin cancer diagnostics. By performing in vitro pig skin permeability studies, we conclude that non-invasive topical sampling of Trp and Kyn is feasible. We explore the influence of different experimental conditions, which are relevant for the clinical in vivo setting, such as pH variations, sampling time, and microbial degradation of Trp and Kyn. The permeabilities of Trp and Kyn are overall similar. However, the permeated Trp/Kyn ratio is generally higher than unity due to endogenous Trp, which should be taken into account to obtain a non-biased Trp/Kyn ratio accurately reflecting systemic concentrations. Additionally, prolonged sampling time is associated with bacterial Trp and Kyn degradation and should be considered in a clinical setting. Finally, the experimental results are supported by the four permeation pathways model, predicting that the hydrophilic Trp and Kyn molecules mainly permeate through lipid defects (i.e., the porous pathway). However, the hydrophobic indole ring of Trp is suggested to result in a small but noticeable relative increase of Trp diffusion via pathways across the SC lipid lamellae, while the shunt pathway is proposed to slightly favor permeation of Kyn relative to Trp.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erfan Dashtimoghadam ◽  
Farahnaz Fahimipour ◽  
Andrew N. Keith ◽  
Foad Vashahi ◽  
Pavel Popryadukhin ◽  
...  

AbstractCurrent materials used in biomedical devices do not match tissue’s mechanical properties and leach various chemicals into the body. These deficiencies pose significant health risks that are further exacerbated by invasive implantation procedures. Herein, we leverage the brush-like polymer architecture to design and administer minimally invasive injectable elastomers that cure in vivo into leachable-free implants with mechanical properties matching the surrounding tissue. This strategy allows tuning curing time from minutes to hours, which empowers a broad range of biomedical applications from rapid wound sealing to time-intensive reconstructive surgery. These injectable elastomers support in vitro cell proliferation, while also demonstrating in vivo implant integrity with a mild inflammatory response and minimal fibrotic encapsulation.


Sign in / Sign up

Export Citation Format

Share Document