scholarly journals Sc0.43(2)Rb2Mo15S19, a partially Sc-filled variant of Rb2Mo15S19

Author(s):  
Patrick Gougeon ◽  
Rabih Al Rahal Al Orabi ◽  
Régis Gautier ◽  
Michel Potel

The structure of scandium dirubidium pentadecamolybdenum nonadecasulfide, Sc0.43 (2)Rb2Mo15S19, constitutes a partially Sc-filled variant of Rb2Mo15S19[Picard, Saillard, Gougeon, Noel & Potel (2000),J. Solid State Chem.155, 417–426]. In the two compounds, which both crystallize in theR\overline{3}cspace group, the structural motif is characterized by a mixture of Mo6Si8Sa6and Mo9Si11Sa6cluster units (`i' is inner and `a' is apical) in a 1:1 ratio. The two components are interconnected through interunit Mo—S bonds. The cluster units are centred at Wyckoff positions 6band 6a(point-group symmetries \overline{3}. and 32, respectively). The Rb+cations occupy large voids between the different cluster units. The Rb and the two inner S atoms lie on sites with 3. symmetry (Wyckoff site 12c), and the Mo and S atoms of the median plane of the Mo9S11S6cluster unit lie on sites with .2 symmetry (Wyckoff site 18e). A unique feature of the structure is a partially filled octahedral Sc site with \overline{1} symmetry. Extended Hückel tight-binding calculations provide an understanding of the variation in the Mo—Mo distances within the Mo clusters induced by the increase in the cationic charge transfer due to the insertion of Sc.

2014 ◽  
Vol 70 (7) ◽  
pp. i38-i38 ◽  
Author(s):  
Amira Souilem ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

The title compound, tripotassium iron(III) bis(orthomolybdate) dimolybdate, was obtained by a solid-state reaction. The main structural building units are one FeO6octahedron, two MoO4tetrahedra and one Mo2O7dimolybdate group, all with point group symmetriesm. These units are linkedviacorner-sharing to form ribbons parallel to [010]. The three K+cations are located between the ribbons on mirror planes and have coordination numbers of 10 and 12. Two O atoms of one of the MoO4tetrahedra of the dimolybdate group are disordered over two positions in a 0.524 (11):0.476 (11) ratio. The structure of the title compound is compared briefly with that of Rb3FeMo4O15.


Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

Symmetries play an important role in the theory of the solid state. As will be developed in this Chapter, DFT calculations for crystalline materials are commonly performed for the irreducible part of the first Brillouin zone, an approach which relies on the use of translational and point group symmetries. Two central properties that result from a calculation in reciprocal space are the wave vector resolved energy spectra, the so called band structure, and the energy resolved density of states. For magnetic materials, atomic magnetic moment moments can be defined and calculated, as well as effective inter-atomic exchange interactions.


1968 ◽  
Vol 21 (10) ◽  
pp. 2379 ◽  
Author(s):  
MA Hooper ◽  
DW James

The Raman spectrum of AsI3 has been determined in solution in CS2 and in the solid state. For the solution the assignment of Stammreich, Forneris, and Tavares has been confirmed by polarization studies. In the solid state it is shown that assignment of the spectrum is only possible on the basis of space group symmetry and an earlier assignment based on point group C3v is in error. The solid state frequencies (R3 symmetry) are v1(Ag) 185 cm-l, v2(Ag) 75 cm-l, v3(Au) 201 cm-l, v4(Au) 102 cm-1, v5(Eg) 205 cm-1, v6(Eg) 50 cm-l, v7(Eg) 216 cm-1, v8(Eg) 74 cm-1.


Author(s):  
Rob. W. Glaisher ◽  
A.E.C. Spargo

Images of <11> oriented crystals with diamond structure (i.e. C,Si,Ge) are dominated by white spot contrast which, depending on thickness and defocus, can correspond to either atom-pair columns or tunnel sites. Olsen and Spence have demonstrated a method for identifying the correspondence which involves the assumed structure of a stacking fault and the preservation of point-group symmetries by correctly aligned and stigmated images. For an intrinsic stacking fault, a two-fold axis lies on a row of atoms (not tunnels) and the contrast (black/white) of the atoms is that of the {111} fringe containing the two-fold axis. The breakdown of Friedel's law renders this technique unsuitable for the related, but non-centrosymmetric binary compound sphalerite materials (e.g. GaAs, InP, CdTe). Under dynamical scattering conditions, Bijvoet related reflections (e.g. (111)/(111)) rapidly acquire relative phase differences deviating markedly from thin-crystal (kinematic) values, which alter the apparent location of the symmetry elements needed to identify the defect.


2020 ◽  
Author(s):  
Xiaojing Xia ◽  
Anupum Pant ◽  
Xuezhe Zhou ◽  
Elena Dobretsova ◽  
Alex Bard ◽  
...  

Fluoride crystals, due to their low phonon energies, are attractive hosts of trivalent lanthanide ions for applications in upconverting phosphors, quantum information science, and solid-state laser refrigeration. In this article, we report the rapid, low-cost hydrothermal synthesis of potassium lutetium fluoride (KLF) microcrystals for applications in solid-state laser refrigeration. Four crystalline phases were synthesized, namely orthorhombic K<sub>2</sub>LuF<sub>5</sub> (Pnma), trigonal KLuF<sub>4</sub> (P3<sub>1</sub>21), orthorhombic KLu<sub>2</sub>F<sub>7</sub> (Pna2<sub>1</sub>), and cubic KLu<sub>3</sub>F<sub>10</sub> (Fm3m), with each phase exhibiting unique microcrystalline morphologies. Luminescence spectra and emission lifetimes of the four crystalline phases were characterized based on the point-group symmetry of trivalent cations. Laser refrigeration was measured by observing both the optomechanical eigenfrequencies of microcrystals on cantilevers in vacuum, and also the Brownian dynamics of optically trapped microcrystals in water. Among all four crystalline phases, the most significant cooling was observed for 10%Yb:KLuF<sub>4</sub> with cooling of 8.6 $\pm$ 2.1 K below room temperature. Reduced heating was observed with 10%Yb:K<sub>2</sub>LuF<sub>5</sub>


2021 ◽  
Author(s):  
Juhi Srivastava ◽  
Anshu Gaur

The phonon mode frequencies of SWNT and SLG in hybrid nanostructures are sensitive to various interactions, such as vdW forces, structural deformation and/or charge transfer between SWNT and SLG.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1435
Author(s):  
Victor G. Yarzhemsky

Sr2RuO4 and Fe-pnictide superconductors belong to the same point group symmetry D4h. Many experimental data confirm odd pairs in Sr2RuO4 and even pairs in Fe-pnictides, but opposite conclusions also exist. Recent NMR results of Pustogow et al., which revealed even Cooper pairs in Sr2RuO4, require reconsideration of symmetry treatment of its SOP (superconducting order parameter). In the present work making use of the Mackey–Bradley theorem on symmetrized squares, a group theoretical investigation of possible pairing states in D4h symmetry is performed. It is obtained for I4/mmm , i.e., space group of Sr2RuO4, that triplet pairs with even spatial parts are possible in kz direction and in points M and Y. For the two latter cases pairing of equivalent electrons with nonzero total momentum is proposed. In P4/nmm space group of Fe- pnictides in point M, even and odd pairs are possible for singlet and triplet cases. It it shown that even and odd chiral states with angular momentum projection m=±1 have nodes in vertical planes, but Eg is nodal , whereas Eu is nodeless in the basal plane. It is also shown that the widely accepted assertion that the parity of angular momentum value is directly connected with the spatial parity of a pair is not valid in a space-group approach to the wavefunction of a Cooper pair.


Author(s):  
Adrian Dominguez-Castro ◽  
Thomas Frauenheim

Theoretical calculations are an effective strategy to comple- ment and understand experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach...


1997 ◽  
Vol 52 (5) ◽  
pp. 663-668 ◽  
Author(s):  
B. Mertens ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of I RbCd4V3O12 and TlCd4V3O12 II have been prepared by solid state reactions in closed iron tubes. The compounds crystallize closely related to the Johillerite structure in the space group C62h- C2/c with I: a = 13.058(3); b - 13.528(3), c = 7 .0 6 0 (2 )Å , β = 114.88(2)°; II: a = 12.999(6), b = 13.527(7), c = 7.055(3) Å , β = 114.88(4)°, Z = 4. Special features are the loss of Cu2+ in order to gain an additional Cd2+ position. The crystal structure is discussed with respect to related compounds of the Johillerite type.


Sign in / Sign up

Export Citation Format

Share Document