scholarly journals Study of 2'-macrolide phosphotransferase selectivity for different substrates

2014 ◽  
Vol 70 (a1) ◽  
pp. C703-C703
Author(s):  
Jonathan Blanchet ◽  
Desiree Fong ◽  
Albert Berghuis

Macrolides are antibiotics that have been in use since the late 1950s to treat a wide range of bacterial infections (e.g. upper respiratory infections, skin and soft–tissue infections, stomach ulcers and some venereal diseases). The structure of these antibiotics contains a lactone ring of either 14, 15, or 16 members, with a variety of sugar moieties attached. Resistance to this class of antibiotics may result from the reaction carried out by macrolide phosphotransferases [MPHs]. MPHs belong to the family of antibiotic kinases which catalyzes the transfer of a phosphate group from a nucleoside triphosphate to a specific hydroxyl on the antibiotic. However, unlike most antibiotic kinases, MPHs utilize GTP as the phosphate donor. Specifically, 2'-macrolide phosphotransferase type I [MPH(2')-I] transfers the gamma-phosphate from GTP to the 2'-hydroxyl of 14- and 15-membered ring macrolides. Crystal structure of the ternary complexes of MPH(2')-I with both 14- and 15-membered lactone macrolides have been determined. To study the basis of substrate selectivity, we have generated mutations of several amino acid residues in the macrolide-binding pocket and examined the catalytic activities of these mutants on the different classes of macrolides, including those containing a 16-membered lactone. Furthermore, we will present kinetic studies of MPH(2')-I containing mutations in the nucleoside-binding pocket in order to study the mechanism for the enzyme's preference for GTP.

2014 ◽  
Vol 70 (a1) ◽  
pp. C705-C705
Author(s):  
Desiree Fong ◽  
Jonathan Blanchet ◽  
Albert Berghuis

2'-macrolide phosphotransferase type I [MPH(2')-I] is an antibiotic kinase that renders many macrolides, such as erythromycin, inactive by catalyzing the transfer of a phosphate group from a nucleoside triphosphate to the hydroxyl at the 2'-position of the antibiotic. MPH(2')-I is functionally and structurally analogous to the aminoglycoside kinases (APHs). However, it is distinct from most APHs in that it utilizes GTP exclusively as its phosphate donor. We will present the crystal structure of MPH(2')-I in its apo and ternary complex forms with guanosine nucleotide and different macrolide substrates. We will compare its nucleoside-binding pocket to that of the 2''-aminoglycoside phosphotransferases [APH(2'')], a subclass of aminoglycoside kinases that are capable of utilizing GTP as a phosphate donor. To further decipher the structural basis of the nucleoside specificity of MPH(2')-I, mutations of amino acid resides in the nucleoside-binding pocket have been carried out and their effects on the binding affinity of purine nucleotides were examined by isothermal titration calorimetry. Our preliminary results show that the "gatekeeper" residue plays a role in governing the nucleoside selectivity.


1996 ◽  
Vol 271 (1) ◽  
pp. R101-R108 ◽  
Author(s):  
S. Takahashi ◽  
L. Kapas ◽  
J. Fang ◽  
J. M. Seyer ◽  
Y. Wang ◽  
...  

Interleukin-1 (IL-1) is hypothesized to be involved in physiological sleep regulation and in sleep responses occurring during infectious disease. If this hypothesis is correct, then inhibition of endogenous IL-1 should reduce both normal sleep and N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP)-induced sleep. MDP is a somnogenic substance derived from bacterial cell walls. We report here the effects of a synthetic IL-1 receptor fragment corresponding to amino acid residues 86-95 of the human type I IL-1 receptor (IL-1RF) on spontaneous sleep and IL-1 beta- and MDP-induced sleep and fever in rabbits. Two doses of the IL-1RF (25 and 50 micrograms) were injected into normal rabbits intracerebroventricularly (icv). Both doses significantly decreased spontaneous non-rapid eye movement sleep (NREMS) across a 22-h recording period. Pretreatment of rabbits with 25 micrograms of IL-1RF blocked the somnogenic actions of 10 ng icv IL-1. Similarly, central pretreatment of animals with 25 micrograms IL-1RF significantly attenuated the NREMS-promoting and REMS-suppressive actions of 150 pmol MDP injected centrally. The increase in NREMS and decrease in REMS induced by systemic injection of 12.5 micrograms/kg MDP were also significantly suppressed by central administration of 50 micrograms IL-1RF. In contrast, the febrile response induced by either intracerebroventricularly or intravenously injected MDP were not significantly affected by IL-1RF. These results support the hypothesis that endogenous, brain-derived IL-1 contributes to the maintenance of normal sleep and may mediate sleep responses to systemic as well as central bacterial infections.


EcoSal Plus ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
I. Barry Holland ◽  
Sandra Peherstorfer ◽  
Kerstin Kanonenberg ◽  
Michael Lenders ◽  
Sven Reimann ◽  
...  

2021 ◽  
Vol 55 (3) ◽  
pp. 256-264

BACKGROUND/AIMS: During an immune response, type I interferon (IFN-I) signaling induces a wide range of changes, including those which are required to overcome viral infection and those which suppress cytotoxic T cells to avoid immunopathology. During certain bacterial infections, IFN-I signaling exerts largely detrimental effects. Although the IFN-I family of proteins all share one common receptor, biologic responses to signaling vary depending on IFN-I subtype. Here, we asked if one IFN-I subtype dominates the pro-bacterial effect of IFN-I signaling and found that control of Listeria monocytogenes (L.m.) infection is more strongly suppressed by IFN-β than IFN-α. METHODS: To study this, we measured bacterial titers in IFNAR-/-, IFN-β‑/‑, Stat2-/-, Usp18fl/fl and Usp18fl/fl x CD11c-Cre mice models in addition to IFN-I blocking antibodies. Moreover, we measured interferon stimulated genes in bone marrow derived dendritic cells after treatment with IFN-α4 and IFN-β. RESULTS: Specifically, we show that genetic deletion of IFN-β or antibody-mediated IFN-β neutralization was sufficient to reduce bacterial titers to levels similar to those observed in mice that completely lack IFN-I signaling (IFNAR-/- mice). However, IFN-α blockade failed to significantly reduce L.m. titers, suggesting that IFN-β is the dominant IFN-I subtype responsible for the pro-bacterial effect of IFN-I. Mechanistically, when focusing on IFN-I signals to dendritic cells, we found that IFN-β induces ISGs more robustly than IFN-α, including USP18, the protein we previously identified as driving the pro-bacterial effects of IFN-I. Further, we found that this induction was STAT1/STAT2 heterodimer- or STAT2/STAT2 homodimer-dependent, as STAT2-deficient mice were more resistant to L.m. infection. CONCLUSION: In conclusion, IFN-Β is the principal member of the IFN-I family responsible for driving the pro-bacterial effect of IFN-I.


2021 ◽  
Author(s):  
Marta Grech-Baran ◽  
Kamil Witek ◽  
Jaroslaw Poznanski ◽  
Anna Grupa-Urbanska ◽  
Tadeusz Malinowski ◽  
...  

Potyviruses are the largest group of plant RNA viruses, causing significant losses in many crops. Among them, potato virus Y (PVY) is particularly important, and enhances the severity of infections by other viruses. The Rysto gene confers PVY resistance and encodes a TIR-NLR intracellular immune receptors that recognizes PVY coat protein (CP). To define a minimal CP fragment sensed by Rysto, we created a series of truncated CP variants and expressed these CP derivatives in Rysto transgenic plants. Deletions that affect the 149 amino acid CP core region lose the ability to trigger Rysto-dependent defence activation. Furthermore, point mutations in the amino acid residues Ser126, Arg157, and Asp201 of the highly conserved RNA-binding pocket of potyviral CP, reduce or abolish Rysto-dependent responses, demonstrating that appropriate folding of the CP core is required for Rysto-mediated recognition. Consistent with these data, we found Rysto recognises CPs of various viruses that share a similar core region, but not those lacking it. Finally, we demonstrated that Rysto provides immunity to plum pox virus and turnip mosaic virus, demonstrating its wide range of applications in disease-resistant crop engineering. In parallel, we showed that CP triggered Rysto activation is SAG101- but not PAD4- or SA- level dependent. Our findings shed new light on how R proteins can detect viruses by sensing highly conserved structural patterns.


2021 ◽  
pp. 28-29
Author(s):  
Kokila G. Kamath ◽  
Vishal S Jadhav

The Severe Acute Respiratory Syndrome (SARS) coronavirus-2 is a novel coronavirus, belonging to the family coronaviridae and is now known to be responsible for the outbreak of a series of recent acute atypical respiratory infections originating in Wuhan, China, termed as coronavirus disease 19 (COVID-19) and has been declared a pandemic by WHO on March 11, 2020. COVID-19 infections may be associated with a wide range of bacterial and fungal co-infections. We report the study of 4 cases, who in our hospital, developed Rhino-orbital mucormycosis, who were diagnosed as COVID-19 positive, with or without associated co-morbidities, involving all age groups. Extensive use of steroids may lead to development or exacerbation of a pre-existing fungal disease in patients with COVID-19 infections.


1989 ◽  
Vol 62 (03) ◽  
pp. 897-901 ◽  
Author(s):  
Hans K Ploos van Amstel ◽  
Pieter H Reitsma ◽  
Karly Hamulyák ◽  
Christine E M de Die-Smulders ◽  
Pier M Mannucci ◽  
...  

SummaryProbands from 15 unrelated families with hereditary protein S deficiency type I, that is having a plasma total protein S concentration fifty percent of normal, were screened for abnormalities in their protein S genes by Southern analysis. Two probands were found to have a deviating DNA pattern with the restriction enzyme Mspl. In the two patients the alteration concerned the disappearance of a Mspl restriction site, CCGG, giving rise to an additional hybridizing Mspl fragment.Analysis of relatives of both probands showed that in one family the mutation does not co-segregate with the phenotype of reduced plasma protein S. In the family of the other proband, however, complete linkage between the mutated gene pattern and the reduced total protein S concentration was found: 12 heterozygous relatives showed the additional Mspl fragment but none of the investigated 26 normal members of the family. The mutation is shown to reside in the PSβ gene, the inactive protein S gene. The cause of type I protein S deficiency, a defect PSα gene has escaped detection by Southern analysis. No recombination has occurred between the PSα gene and the PSβ gene in 23 informative meioses. This suggests that the two protein S genes, located near the centromere of chromosome 3, are within 4 centiMorgan of each other.


2020 ◽  
pp. 102-109
Author(s):  
Svetlana Alekseevna Raschetina ◽  

Relevance and problem statement. Modern unstable society is characterized by narrowing the boundaries of controlled socialization and expanding the boundaries of spontaneous socialization of a teenager based on his immersion in the question arises about the importance of the family in the process of socialization of a teenager in the conditions of expanding the space of socialization. There is a need to study the role of the family in this process, to search, develop and test research methods that allow us to reveal the phenomenon of socialization from the side of its value characteristics. The purpose and methodology of the study: to identify the possibilities of a systematic and anthropological methodology for studying the role of the family in the process of socialization of adolescents in modern conditions, testing research methods: photo research on the topic “Ego – I” (author of the German sociologist H. Abels), profile update reflexive processes (by S. A. Raschetina). Materials and results of the study. The study showed that for all the problems that exist in the family of the perestroika era and in the modern family, it acts for a teenager as a value and the first (main) support in the processes of socialization. The positions well known in psychology about the importance of interpersonal relations in adolescence for the formation of attitudes towards oneself as the basis of socialization are confirmed. Today, the frontiers of making friends have expanded enormously on the basis of Internet communication. The types of activities of interest to a teenager (traditional and new ones related to digitalization) are the third pillar of socialization. Conclusion. The “Ego – I” method of photo research has a wide range of possibilities for quantitative and qualitative analysis of the socialization process to identify the value Pillars of this process.


Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


2020 ◽  
Author(s):  
Kiron Kumar Ghosh ◽  
Alexander Uttry ◽  
Francesca Ghiringhelli ◽  
Arup Mondal ◽  
Manuel van Gemmeren

We report the ligand enabled C(sp3)–H activation/olefination of free carboxylic acids in the γ-position. Through an intramolecular Michael-addition, δ-lactones are obtained as products. Two distinct ligand classes are identified that enable the challenging palladium-catalyzed activation of free carboxylic acids in the γ-position. The developed protocol features a wide range of acid substrates and olefin reaction partners and is shown to be applicable on a preparatively useful scale. Insights into the underlying reaction mechanism obtained through kinetic studies are reported.<br>


Sign in / Sign up

Export Citation Format

Share Document