Design of a high gain equilateral triangular microstrip patch antenna array (ETMPAA) on FR4 substrate using microstrip feed

Author(s):  
Manikandan Alagarsamy ◽  
Uma Maheswari Sangareswaran ◽  
P. Dhanaraj

Purpose The purpose of this paper is to discuss and analyze a microstrip feed equilateral triangular microstrip array antenna (ETMPAA) that is proposed for S band (3 GHz) applications. Design/methodology/approach The ETMPAA comprises three equilateral triangular patches with equal distance. The size of the antenna is 49.4 mm (0.0494 m)×18.4 mm (0.184 m). The proposed antenna has been designed by etching triangular shape structure on glass epoxy substrate (FR4). Findings The simulated result shows that ETMPAA has the impedance bandwidth of 900 MHz and the bandwidth can be achieved by controlling the gap between the patch antennas. The antenna is fed by microstrip feeding technique. Design of an antenna using advanced design system (ADS), based on finite element methods (FEM) has been used to analyze and optimize the antenna. Based on the measurement results an antenna proposed with maximum efficiency and maximum gain. Originality/value This paper fulfils an identified need to study a microstrip feed ETMPAA is proposed for S band (3 GHz) applications.

Frequenz ◽  
2017 ◽  
Vol 72 (1-2) ◽  
Author(s):  
Chen-yang Shuai ◽  
Guang-ming Wang

AbstractA simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19~10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.


2021 ◽  
Vol 21 (1) ◽  
pp. 8-14
Author(s):  
Deok Kyu Kong ◽  
Jaesik Kim ◽  
Daewoong Woo ◽  
Young Joong Yoon

A modified proximity-coupled microstrip patch antenna with broad impedance bandwidth is proposed by incorporating proximity-coupled patch antenna into the rectangular open-ended microstrip feed line on a cavity structure. First we design a proximity-coupled microstrip antenna to have a wide bandwidth in the lower band centered at 7 GHz using a cavity-backed ground. To broaden the bandwidth of the antenna to the upper band, we then apply a rectangular open-ended microstrip feed line, adjusting the relative position to the cavity to generate an additional resonance close to 10 GHz. The combination of lower and upper band design results in a broadband antenna with dimensions of 30 mm × 30 mm × 9 mm (0.9λ<sub>0</sub> × 0.9λ<sub>0</sub> × 0.27λ<sub>0</sub>) is designed where λ<sub>0</sub> corresponds to the free space wavelength at a center frequency of 9 GHz. The measurement results verify the broad impedance bandwidth (VSWR ≤ 2) of the antenna at 77% (5.6–12.6 GHz) while the broadside gain is maintained between 6 dBi and 8 dBi within the operational broad bandwidth.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Bo Han ◽  
Shibing Wang ◽  
Jia Zhao ◽  
Xiaofeng Shi

A novel planar Yagi antenna printed on a microwave substrate with dielectric constant of 3.55 for Ku band applications has been presented in this paper. The proposed antenna has been fed by the slow-wave half-mode substrate-integrated waveguide and has achieved good characteristics, such as reduced size, high gain, broadband, and low insertion loss. The proposed antenna has been fabricated by Rogers 4350 substrate with lengths of two arms for dipole 0.46 λ0. Measured results indicate that the impedance bandwidth (below −10 dB return loss) is from 15.4 GHz to 19.4 GHz with peak gain 7.49 dBi. Both simulations and experiments convince that the proposed antenna could have reliable applications for Ku band wireless communications.


2019 ◽  
Vol 11 (10) ◽  
pp. 1069-1074 ◽  
Author(s):  
Zicheng Niu ◽  
Hou Zhang ◽  
Qiang Chen ◽  
Tao Zhong

AbstractIn this paper, a novel decoupling technique for closely spaced E-plane patch antennas using defect ground structure (DGS) is proposed. The electric field coupling between the antennas is suppressed by etching DGS which consists of a pair of rectangular slots and four stubs on the ground plane. Moreover, unlike the other methods, the DGS is not etched in the middle of the antennas but loaded along the outer edge of the radiated patch. Thus, through the adopted technology the distance between the antenna elements is reduced and the isolation is increased. To validate the improvements by adopting the proposed technology, the array with DGS loading has been fabricated and then measured. The measurement results show that designed antennas have 95 MHz 10-dB impedance bandwidth, which is 25 MHz higher than that of the antenna without DGS. More importantly, isolation improvements have been increased from 8.5 to 31.3 dB by using the decoupling technique when the antennas are placed with a 0.032 λ0 edge-to-edge distance, where λ0 is the free-space wavelength. Therefore, this technique can be widely applied to improve isolation in a compact and low profile antenna system.


2021 ◽  
Vol 10 (3) ◽  
pp. 14-23
Author(s):  
H. Malekpoor ◽  
M. Shahraki

This study presents two new designs of reduced size broadband microstrip patch antennas for ultra-wideband (UWB) operation. A folded triangular patch’s feeding technique, V-shaped slot, half V-shaped slot and shorting pins are employed to design the suggested antennas. The shorting pins are applied at the edge of structures to miniaturize the size of the patches. The suggested design with the V-shaped slot provides the measured impedance bandwidth (S11˂-10 dB) of 3.91-12 GHz (101.7%) for broadband application. In the suggested design with the V-shaped slot, the wide bandwidth with an acceptable size reduction is achieved. By introducing a suggested half design with the half V-shaped slot, the impedance bandwidth of the proposed half structure is improved from 4 to 17.22 GHz. The half design includes a measured impedance bandwidth of 124.6% with reduced size of more than 93% compared to the corresponding full design and an enhanced measured bandwidth of 23%. The obtained radiation and impedance results show that the suggested designs are applicable for wideband operation. Besides, the effects of some basic concepts and surface currents on the suggested structures are investigated to explain their broadband performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Deepinder Singh Wadhwa ◽  
Praveen Kumar Malik ◽  
Jaspal Singh Khinda

Purpose A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands, suitable for futuristic communication systems. Design/methodology/approach Design consists of radiating patch and a partial ground plane with semi-circle arc for smooth flow of current. The lower corners of patch are gradually clipped away to make the patch nearly elliptical. Further, two tilted slots at an angle α = 15° are etched at the edges of the patch to augment bandwidth for mm-wave range. These slots divert the periphery current of semi elliptical patch towards center portion of antenna which ensures the participation in radiation of central portion of patch. The upper corners are also clipped away to limit the copper losses and smoothly flow of current. The proposed antenna is designed using HFSS and it is structured on inexpensive FR4 substrate of size 27.5 × 20 mm2. Findings It supports enormous −10 dB bandwidth of 5.86–40GHz (148.89%) even though use of high loss-tangent material and high gain for 28 GHz (27.50–28.35 GHz) n261–band and 37 GHz (37–38.6 GHz) and 39 GHz (38.6–40GHz) n260–bands with a peak-gain of 8.76 dBi, 10.8 dBi and 9.92 dBi, respectively. Originality/value The proposed methodology of design is very useful to enhance impedance bandwidth to cover all C–, X–, Ku–, K– and Ka–band even though use of low cost material with high loss tangent. In recent literature, the designs were implemented with a costly material and having very low loss tangent and covers partial suggest bands.


Author(s):  
Ayoub Malki ◽  
Larbi El Abdellaoui ◽  
Jamal Zbitou ◽  
A. Errkik ◽  
A. Tajmouati ◽  
...  

<p>The objective of this paper is to develop a new design of a voltage controlled microwave oscillator by using the method of negative resistance in order to fabricate VCO with very good performance in terms of tuning rang, phase noise, output power and stability. The use of hybrid microwave integrated circuit technology’s (HMIC) offers a lot of advantage for our structure concerning size, cost, productivity, and Q factor. This VCO is designed at [480MHz; 1.4GHz] frequency for applications in the phase locked loop (PLL) for signal tracking, FM demodulation, frequency modulation, mobile communication, etc. The different steps of studied voltage controlled oscillator’s design are thoroughly described. Initially designed at a fixed frequency meanwhile the use of a varactor allow us to tune the frequency of the second design. It has been optimized especially regarding tuning bandwidth, power, phase noise, consumption and size of the whole circuit. The achieved results and proposed amendment are the product of theoretical study and predictive simulations with advanced design system microwave design software. A micro-strip VCO with low phase noise based on high gain ultra low noise RF transistor BFP 740 has been designed, fabricated, and characterized. The VCO delivers a sinusoidal signal at the frequency 480 MHz with tuning bandwidth 920 MHz, spectrum power of 12.62 dBm into 50 Ω load and phase noise of -108 dBc/Hz at 100 Hz offset. Measurement results and simulation are in good agreement. Circuit is designed on FR4 substrate which includes integrated resonators and passive components.</p>


2021 ◽  
Vol 11 (2) ◽  
pp. 693
Author(s):  
Arjun Surendran ◽  
Aravind B ◽  
Tanweer Ali ◽  
Om Prakash Kumar ◽  
Pradeep Kumar ◽  
...  

Franklin array antennas are considered as one of the most competitive candidates for millimeter-wave (mmW) 5G applications due to their compact size, simple geometry and high gain. This paper describes a microstrip Franklin antenna array for fifth generation (5G) wireless applications. The proposed modified Franklin array is based on a collinear array structure with the objective of achieving broad bandwidth, high directivity, and dual-band operation at 22.7 and 34.9 GHz. The designed antenna consists of a 3 × 3 array patch element as the radiating part and a 3 × 3 slotted ground plane operating at a multiband resonance in the mmW range. The dimensions of the patch antennas are designed based on λ/2 of the second resonant frequency. The designed antenna shows dual band operation with a total impedance bandwidth ranging from 21.5 to 24.3 GHz (fractional bandwidth of 12.2%) at the first band and from 33.9 to 36 GHz (fractional bandwidth of 6%) at the second band in simulation. In measurement, the impedance bandwidth ranges from 21.5 to 24.5 GHz (fractional bandwidth of 13%) at the first band and from 34.3 to 36.2 GHz (fractional bandwidth of 5.3%) at the second band, respectively. The performance of the antenna is analyzed by parametric analysis by modifying various parameters of the antenna. All the necessary simulations are carried out using HFSS v.14.0.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4908
Author(s):  
Sun-Woong Kim ◽  
Ho-Gyun Yu ◽  
Dong-You Choi

This paper proposes a novel broadband octagonal patch antenna with parasitic patches. The proposed patch antenna is constructed with four parasitic patches around a central radiating octagonal element. It is illustrated that this arrangement can be used to improve the antenna bandwidth and gain when compared with that of conventional antennas. The proposed patch antenna is very simple, low-profile, and economical. The typical analysis of the proposed antenna is analyzed by the S11(S-parameter), the radiation pattern, and the realized gain. It can achieve an impedance bandwidth of 1.44 GHz and a high gain of 8.56 dBi in the 8.5 GHz band. Furthermore, the proposed antenna shows that the directional pattern and HPBW measurement results of E and H-plane were 70° and 74° at 8.5 GHz, and 74° and 83° at 9 GHz, and 47° and 42° at 9.5 GHz, respectively.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


Sign in / Sign up

Export Citation Format

Share Document