High gain antenna for n260- & n261-bands and augmentation in bandwidth for mm-wave range by patch current diversions

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Deepinder Singh Wadhwa ◽  
Praveen Kumar Malik ◽  
Jaspal Singh Khinda

Purpose A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands, suitable for futuristic communication systems. Design/methodology/approach Design consists of radiating patch and a partial ground plane with semi-circle arc for smooth flow of current. The lower corners of patch are gradually clipped away to make the patch nearly elliptical. Further, two tilted slots at an angle α = 15° are etched at the edges of the patch to augment bandwidth for mm-wave range. These slots divert the periphery current of semi elliptical patch towards center portion of antenna which ensures the participation in radiation of central portion of patch. The upper corners are also clipped away to limit the copper losses and smoothly flow of current. The proposed antenna is designed using HFSS and it is structured on inexpensive FR4 substrate of size 27.5 × 20 mm2. Findings It supports enormous −10 dB bandwidth of 5.86–40GHz (148.89%) even though use of high loss-tangent material and high gain for 28 GHz (27.50–28.35 GHz) n261–band and 37 GHz (37–38.6 GHz) and 39 GHz (38.6–40GHz) n260–bands with a peak-gain of 8.76 dBi, 10.8 dBi and 9.92 dBi, respectively. Originality/value The proposed methodology of design is very useful to enhance impedance bandwidth to cover all C–, X–, Ku–, K– and Ka–band even though use of low cost material with high loss tangent. In recent literature, the designs were implemented with a costly material and having very low loss tangent and covers partial suggest bands.

2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Majeed A. Alkanhal

In order to achieve wide bandwidth and high gain, we propose a stacked antenna structure having a microstrip aperture coupled feeding technique with a mounted Horn integrated on it. With optimized parameters, the single antenna element at a center frequency of 60 GHz, exhibits a wide impedance bandwidth of about 10.58% (58.9–65.25 GHz) with a gain and efficiency of 11.78 dB and 88%, respectively. For improving the gain, we designed a 2 × 2 and 4 × 4 arrays with a corporate feed network. The side lobe levels were minimized and the back radiations were reduced by making use of a reflector atλ/4distance from the corporate feed network. The2×2array structure resulted in improved gain of 15.3 dB with efficiency of 83%, while the4×4array structure provided further gain improvement of 18.07 dB with 68.3% efficiency. The proposed design is modelled in CST Microwave Studio. The results are verified using HFSS, which are found to be in good agreement.


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1080 ◽  
Author(s):  
Azita Goudarzi ◽  
Mohammad Mahdi Honari ◽  
Rashid Mirzavand

Resonant cavity antennas (RCAs) are suitable candidates to achieve high-directivity with a low-cost and easy fabrication process. The stable functionality of the RCAs over different frequency bands, as well as, their pattern reconfigurability make them an attractive antenna structure for the next generation wireless communication systems, i.e., fifth generation (5G). The variety of designs and analytical techniques regarding the main radiator and partially reflective surface (PRS) configurations allow dramatic progress and advances in the area of RCAs. Adding different functionalities in a single structure by using additional layers is another appealing feature of the RCA structures, which has opened the various fields of studies toward 5G applications. This paper reviews the recent advances on the RCAs along with the analytical methods, and various capabilities that make them suitable to be used in 5G communication systems. To discuss different capabilities of RCA structures, some applicable fields of studies are followed in different sections of this paper. To indicate different techniques in achieving various capabilities, some recent state-of-the-art designs are demonstrated and investigated. Since wideband high-gain antennas with different functionalities are highly required for the next generation of wireless communication, the main focus of this paper is to discuss primarily the antenna gain and bandwidth. Finally, a brief conclusion is drawn to have a quick overview of the content of this paper.


2014 ◽  
Vol 6 (5) ◽  
pp. 521-526 ◽  
Author(s):  
Davinder Parkash ◽  
Rajesh Khanna

This proposed work illustrates the design of a defected ground structure (DGS)-based coplanar waveguide (CPW)-fed multiband microstrip antenna consisting of four vertical monopoles, joined together by the few rectangular horizontal strips. In this multiband antenna, I-shaped defects are inserted into both sides of ground plane of CPW feed creating a DGS-CPW. The 10 dB impedance bandwidth of lower band is 29%, ranging from 2.232 to 3.1 GHz, with respect to the central frequency of 2.52 GHz, and while that of the upper band is 2.1 GHz (4.712–6.81 GHz), about 35%, referred to the central frequency of 5.7 GHz. The parametric study is performed to understand the characteristics of the proposed antenna. To verify the simulated design concept, a prototype antenna is designed and fabricated on the FR4 substrate, and characterized experimentally. The characteristic of antenna parameters such as S-parameter, gain, current distribution, and radiation pattern have been studied. The proposed antenna is suitable for WLAN/WiMAX applications.


2021 ◽  
Vol 34 (3) ◽  
pp. 435-444
Author(s):  
Biplab Bag ◽  
Sushanta Biswas ◽  
Partha Sarkar

In this paper dual wideband high gain circular shaped microstrip antenna with modified ground plane is presented for wireless communication systems. The overall dimension of the proposed antenna is 50 x 40 x 1.6 mm3. The radiating element consists of circular shaped patch which is excited by microstrip feed-line printed on FR4 epoxy substrate. The ground plane is on the other side of the substrate having a rectangular ring shape to enhance the peak gain of the antenna. The proposed antenna exhibits two wide fractional bandwidths (based on ? -10 dB) of 61.1% (ranging from 2.0 to 3.8 GHz, centred at 2.88 GHz) and 53.37% (ranging from 5.48 to 9.6 GHz, centred at 7.44 GHz). The measured peak gain achieved is 8.25 dBi at 8.76 GHz. The measured impedance bandwidth and gain suffice all the commercial bands of wireless systems such as 4G LTE band-40, Bluetooth, Wi-Fi, WLAN, WiMAX, C-band, and Xband. The measured results are experimentally tested and verified with simulated results. A reasonable agreement is found between them.


Author(s):  
Yuanzhi Liu ◽  
Mustapha C.E. Yagoub

A broadband and high-gain printed antenna array is presented in this paper. Its single antenna element consists of a loop and two symmetric dipole patches, making the element exhibiting broad impedance bandwidth and improved gain at the targeted frequency, which is 28 GHz, one of the 5G mm-wave band, for this design. An 8×3 antenna array fed by a microstrip line feed network was designed and simulated. With a compact size of 98×32.5 mm2 , the array presents a broad -10 dB impedance bandwidth of 6.8 GHz (24.3%) and a high gain of 18 dBi at 28 GHz. Besides, the single-layered array also features low profile, simple geometry, and low cost, making it a good candidate for 5G communication systems.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 778
Author(s):  
Iftikhar Ahmad ◽  
Houjun Sun ◽  
Umair Rafique ◽  
Zhang Yi

This paper presents a design of a triangular slot-loaded planar rectangular antenna array for wideband millimeter-wave (mm-wave) 5G communication systems. The proposed array realizes an overall size of 35.5 × 14.85 mm2. To excite the array elements, a four-way broadband corporate feeding network was designed and analyzed. The proposed array offered a measured impedance bandwidth in two different frequency ranges, i.e., from 23 to 24.6 GHz and from 26 to 45 GHz. The single-antenna element of the array consists of a rectangular patch radiator with a triangular slot. The partial ground plane was used at the bottom side of the substrate to obtain a wide impedance bandwidth. The peak gain in the proposed array is ≈12 dBi with a radiation efficiency of >90%. Furthermore, the array gives a half-power beamwidth (HPBW) of as low as 12.5°. The proposed array has been fabricated and measured, and it has been observed that the measured results are in agreement with the simulated data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Basem Aqlan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Laurent Le-Coq

AbstractA low-cost, compact, and high gain Fabry–Perot cavity (FPC) antenna which operates at 300 GHz is presented. The antenna is fabricated using laser-cutting brass technology. The proposed antenna consists of seven metallic layers; a ground layer, an integrated stepped horn element (three-layers), a coupling layer, a cavity layer, and an aperture-frequency selective surface (FSS) layer. The proposed aperture-FSS function acts as a partially reflective surface, contributing to a directive beam radiation. For verification, the proposed sub-terahertz (THz) FPC antenna prototype was developed, fabricated, and measured. The proposed antenna has a measured reflection coefficient below − 10 dB from 282 to 304 GHz with a bandwidth of 22 GHz. The maximum measured gain observed is 17.7 dBi at 289 GHz, and the gain is higher than 14.4 dBi from 285 to 310 GHz. The measured radiation pattern shows a highly directive pattern with a cross-polarization level below − 25 dB over the whole band in all cut planes, which confirms with the simulation results. The proposed antenna has a compact size, low fabrication cost, high gain, and wide operating bandwidth. The total height of the antenna is 1.24 $${\lambda }_{0}$$ λ 0 ($${\lambda }_{0}$$ λ 0 at the design frequency, 300 GHz) , with a size of 2.6 mm × 2.6 mm. The proposed sub-THz waveguide-fed FPC antenna is suitable for 6G wireless communication systems.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Wonsuk Ko

Abstract Sub-terahertz (THz) technology is expected to deliver exceptional data rates for future sixth generation wireless communication systems especially for intelligent communication among devices falling under the Internet of Things (IoT) category. Moving from current 5G millimeter wave (mmW) technology towards THz spectrum will eventually provide unprecedented solutions that will guarantee higher transmission rates and channel capacity for any wireless communication system. With various electronic and wireless components working together to fulfill this promise, high gain antennas having compact profile is one such technology that will aid in achieving sub-THz communication while offering low path and power losses with reliable and fast data transfers. In this context, this work proposes a novel deformed patch antenna operating in the sub-THz spectrum i.e. at 300 GHz band. The proposed antenna is fed via a microstrip line following the proximity coupled feeding technique. Utilizing this technique provides a wide impedance bandwidth with a broadside radiation pattern having minimum side lobe levels of around −12 dB and a directivity of 10–15 dBi for the single and array elements respectively. The proposed design has a small footprint of 1.5 × 1.5 × 0.06 mm3 for the single element while the array element has dimensions of 6 × 5 × 0.06 mm3. Both the designs have been simulated in Computer Simulation Technology-Microwave Studio (CST-MWS) and the results verified via high-frequency structure simulator (HFSS) simulator. The results confirm the viability of the proposed designs to be potential candidates for future sixth generation and IoT based applications.


Sign in / Sign up

Export Citation Format

Share Document