Computational method for determining the mechanical tension in a self-anchored suspension bridge during construction and its engineering application

2017 ◽  
Vol 34 (5) ◽  
pp. 1468-1484 ◽  
Author(s):  
Pengzhen Lu ◽  
Hua Shao ◽  
Jian Ting Cheng

Purpose The purpose of this paper is to develop a simplified optimization calculation method to assess cable force of self-anchored suspension bridge based on optimization theories. Design/methodology/approach A simplified analysis method construction using Matlab is developed, which is then compared with the optimization method that considers the main cable’s geometric nonlinearity with software ANSYS in an actual bridge calculation. Findings This contrast proves the weak coherence and the adjacently interaction theory unreasonable and its limitation. Originality/value This paper analyzes the calculation method to assess cable force of a self-anchored suspension bridge and its application effect.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pengzhen Lu ◽  
Jianting Chen ◽  
Jingru Zhong ◽  
Penglong Lu

The hangers of self-anchored suspension bridge need to be tensioned suitably during construction. In view of this point, a simplified optimization calculation method of cable force for self-anchored suspension bridge has been developed based on optimization theories, such as minimum bending energy method, and internal force balanced method, influence matrix method. Meanwhile, combined with the weak coherence of main cable and the adjacently interaction of hanger forces, a simplified analysis method is developed using MATLAB, which is then compared with the optimization method that consider the main cable's geometric nonlinearity with software ANSYS in an actual example bridge calculation. This contrast proves the weak coherence of main cable displacement and the limitation of the adjacent cable force influence. Furthermore, a tension program that is of great reference value has been developed; some important conclusions, advices, and attention points have been summarized.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Han-Hao Zhang ◽  
Nan-Nan Sun ◽  
Pei-Zhi Wang ◽  
Man-Hui Liu ◽  
Yuan Li

Modern cable-stayed bridges are spatial, multicable systems. The cable force needs to be adjusted during the construction phase and maintenance phase. The existing calculation methods of cable force adjustment mainly considered the rationality of structural force, but only few research studies have been conducted on how to reduce the number of stay cables which need to be adjusted. This study aims to propose an optimization calculation method including the optimization module with the sensitivity analysis and updating design variable module (UDVM), which are used for cable force adjustment in cable-stayed bridges. Based on the finite difference method, the sensitivity analysis is adopted in the optimization module, which can capture the response of structures as design variables vary; the particle swarm optimization method is adopted for structural optimization. The proposed method can dramatically reduce the number of stay cables which need to be adjusted and ensure the main girder stresses remain in a reasonable state during stay cable adjustment progress by UDVM. Moreover, the proposed method can continuously update the objective function, constraint conditions, and design variables. Finally, this proposed optimization calculation method is applied to two different cable-stayed bridges to validate the reliability and feasibility of the method.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Long Yu ◽  
Wei Xu ◽  
Da-bing Zhang ◽  
Xu-ming Ma ◽  
Yong-hong Wu

To improve the efficiency of cable force adjustment of composite saddle anchor span of single-tower single-span ground-anchored suspension bridge, a strain incremental adjustment method is proposed. The analytical calculation model is established according to the relative spatial position of the cable strand and the saddle groove of the composite saddle, and the target cable force of the cable strands is calculated by the target position of the composite saddle in the cable-stayed bridge and construction phases. Considering the coupling relationship between the cable strand and the composite saddle, the calculation formula of the change in main span main cable force and anchor span cable force after the adjustment of a single cable strand is derived. Based on the condition of equilibrium of forces along the slip surface of the composite saddle, the slip amount of composite saddle after a round of cable strand adjustment is obtained, then the adjustment amount of actual construction of the cable strands is also obtained through the strain incremental adjustment method. With the help of a numerical simulation platform, the calculation program of the cable force adjustment of composite saddle anchor span is established by an iterative solution method. In this paper, taking the Jinsha River Bridge at Hutiao Gorge as a research object, the adjustment of cable force of composite saddle anchor span is analyzed and calculated. The research results indicate that the calculated cable force is obtained by the strain incremental adjustment method, and it is similar to the measured cable force. The cable strand adjustment and optimization method avoids excessive repeated stretching and relaxation of a single cable strand in the process of multiple rounds of cable strand adjustment and reduces the amount of construction adjustment. This method can effectively reduce the times of cable strand adjustment and improve the efficiency of adjusting the anchor span cable force.


Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 304-311 ◽  
Author(s):  
Pengfei Jia ◽  
Fengchun Tian ◽  
Shu Fan ◽  
Qinghua He ◽  
Jingwei Feng ◽  
...  

Purpose – The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy. Design/methodology/approach – An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification. Findings – The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection. Research limitations/implications – To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose. Practical implications – In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring. Originality/value – The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.


2021 ◽  
Vol 11 (13) ◽  
pp. 6010
Author(s):  
Han-Seong Gwak ◽  
Hong-Chul Lee ◽  
Byoung-Yoon Choi ◽  
Yirong Mi

Mobile cranes have been used extensively as essential equipment at construction sites. The productivity improvement of the mobile crane affects the overall productivity of the construction project. Hence, various studies have been conducted regarding mobile crane operation planning. However, studies on solving RCP (the repositioning mobile crane problem) are insufficient. This article presents a mobile crane reposition route planning optimization method (RPOS) that minimizes the total operating time of mobile crane. It converts the construction site into a mathematical model, determines feasible locations of the mobile crane, and identifies near-global optimal solution (s) (i.e., the placement point sequences of mobile crane) by implementing genetic algorithm and dijkstra’s algorithm. The study is of value to practitioners because RPOS provides an easy-to-use computerized tool that reduces the lengthy computations relative to data processing and Genetic Algorithms (GAs). Test cases verify the validity of the computational method.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mariana Souza Rocha ◽  
Luiz Célio Souza Rocha ◽  
Marcia Barreto da Silva Feijó ◽  
Paula Luiza Limongi dos Santos Marotta ◽  
Samanta Cardozo Mourão

PurposeThe mucilage of the Linum usitatissimum L. seed (Linseed) is one of the natural mucilages that presents a great potential to provide a food hydrocolloid with potential applications in both food and pharmaceutical industries. To increase the yield and quality of linseed oil during its production process, it is necessary to previously extract its polysaccharides. Because of this, flax mucilage production can be made viable as a byproduct of oil extraction process, which is already a product of high commercial value consolidated in the market. Thus, the purpose of this work is to optimize the mucilage extraction process of L. usitatissimum L. using the normal-boundary intersection (NBI) multiobjective optimization method.Design/methodology/approachCurrently, the variables of the process of polysaccharide extraction from different sources are optimized using the response surface methodology. However, when the optimal points of the responses are conflicting it is necessary to study the best conditions to achieve a balance between these conflicting objectives (trade-offs) and to explore the available options it is necessary to formulate an optimization problem with multiple objectives. The multiobjective optimization method used in this work was the NBI developed to find uniformly distributed and continuous Pareto optimal solutions for a nonlinear multiobjective problem.FindingsThe optimum extraction point to obtain the maximum fiber concentration in the extracted material was pH 3.81, temperature of 46°C, time of 13.46 h. The maximum extraction yield of flaxseed was pH 6.45, temperature of 65°C, time of 14.41 h. This result confirms the trade-off relationship between the objectives. NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows to analyze the behavior of the trade-off relationship. Thus, the decision-maker can set extraction conditions to achieve desired characteristics in mucilage.Originality/valueThe novelty of this paper is to confirm the existence of a trade-off relationship between the productivity parameter (yield) and the quality parameter (fiber concentration in the extracted material) during the flaxseed mucilage extraction process. The NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows us to analyze the behavior of the trade-off relationship. This allows the decision-making to the extraction conditions according to the desired characteristics of the final product, thus being able to direct the extraction for the best applicability of the mucilage.


2018 ◽  
Vol 91 (1) ◽  
pp. 124-133
Author(s):  
Zhe Yuan ◽  
Shihui Huo ◽  
Jianting Ren

Purpose Computational efficiency is always the major concern in aircraft design. The purpose of this research is to investigate an efficient jig-shape optimization design method. A new jig-shape optimization method is presented in the current study and its application on the high aspect ratio wing is discussed. Design/methodology/approach First, the effects of bending and torsion on aerodynamic distribution were discussed. The effect of bending deformation was equivalent to the change of attack angle through a new equivalent method. The equivalent attack angle showed a linear dependence on the quadratic function of bending. Then, a new jig-shape optimization method taking integrated structural deformation into account was proposed. The method was realized by four substeps: object decomposition, optimization design, inversion and evaluation. Findings After the new jig-shape optimization design, both aerodynamic distribution and structural configuration have satisfactory results. Meanwhile, the method takes both bending and torsion deformation into account. Practical implications The new jig-shape optimization method can be well used for the high aspect ratio wing. Originality/value The new method is an innovation based on the traditional single parameter design method. It is suitable for engineering application.


2019 ◽  
Vol 25 (9) ◽  
pp. 1482-1492
Author(s):  
Tong Wu ◽  
Andres Tovar

Purpose This paper aims to establish a multiscale topology optimization method for the optimal design of non-periodic, self-supporting cellular structures subjected to thermo-mechanical loads. The result is a hierarchically complex design that is thermally efficient, mechanically stable and suitable for additive manufacturing (AM). Design/methodology/approach The proposed method seeks to maximize thermo-mechanical performance at the macroscale in a conceptual design while obtaining maximum shear modulus for each unit cell at the mesoscale. Then, the macroscale performance is re-estimated, and the mesoscale design is updated until the macroscale performance is satisfied. Findings A two-dimensional Messerschmitt Bolkow Bolhm (MBB) beam withstanding thermo-mechanical load is presented to illustrate the proposed design method. Furthermore, the method is implemented to optimize a three-dimensional injection mold, which is successfully prototyped using 420 stainless steel infiltrated with bronze. Originality/value By developing a computationally efficient and manufacturing friendly inverse homogenization approach, the novel multiscale design could generate porous molds which can save up to 30 per cent material compared to their solid counterpart without decreasing thermo-mechanical performance. Practical implications This study is a useful tool for the designer in molding industries to reduce the cost of the injection mold and take full advantage of AM.


2019 ◽  
Vol 25 (10) ◽  
pp. 1637-1646 ◽  
Author(s):  
Bohao Xu ◽  
Xiaodong Tan ◽  
Xizhi Gu ◽  
Donghong Ding ◽  
Yuelin Deng ◽  
...  

Purpose Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive manufacturing (WAAM). This paper aims to propose a shape-driven control method for aligning a substrate with slopes to expand the application of WAAM. Design/methodology/approach A substrate with slopes must be aligned by depositing weld beads with slopes. First, considering the large height differences of slopes, multi-layer deposition is needed, and the number of layer of weld beads must be ascertained. Second, the change in the deposition rate is controlled as a ramp function to generate weld beads with slopes. Third, the variation of the deposition rate must be fine-tuned to compensate for the deviation between the actual and theoretical layer heights at the deposition of each layer. Finally, the parameters of the ramp functions at the deposition of each layer are determined through an optimization method. Findings First, to model the response function of layer height to deposition rate, the experiments are conducted with the deposition rate jumping from 4 to 8 mm/s and from 8 to 4 mm/s. When the deposition rate jumps from 4 to 8 mm/s and from 8 to 4 mm/s, the difference in the height of each layer decreases as the number of layer increases. Second, the variation of the deposition rate can be fine-tuned based on the deviation between the measured and theoretical layer heights because the variation of the deposition rate is proportional to the layer height when the initial and end deposition rates are near 4 or 8 mm/s, respectively. Third, the experimental results demonstrate that the proposed method is effective for single-layer aligning and aligning a substrate with one or more slopes. Originality/value The proposed method can expand the application of WAAM to an uneven substrate with slopes and lays the foundation for aligning tasks focused on uneven substrates with more complex shapes.


2019 ◽  
Vol 15 (2) ◽  
pp. 523-536
Author(s):  
Jinliang Liu ◽  
Yanmin Jia ◽  
Guanhua Zhang ◽  
Jiawei Wang

Purpose The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams. Design/methodology/approach Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated. Findings The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative. Originality/value The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.


Sign in / Sign up

Export Citation Format

Share Document