An unbiased GM(1,1)-based new hybrid approach for time series forecasting

2016 ◽  
Vol 6 (3) ◽  
pp. 322-340 ◽  
Author(s):  
R.M. Kapila Tharanga Rathnayaka ◽  
D.M.K.N. Seneviratna ◽  
Wei Jianguo ◽  
Hasitha Indika Arumawadu

Purpose The time series forecasting is an essential methodology which can be used for analysing time series data in order to extract meaningful statistics based on the information obtained from past and present. These modelling approaches are particularly complicated when the available resources are limited as well as anomalous. The purpose of this paper is to propose a new hybrid forecasting approach based on unbiased GM(1,1) and artificial neural network (UBGM_BPNN) to forecast time series patterns to predict future behaviours. The empirical investigation was conducted by using daily share prices in Colombo Stock Exchange, Sri Lanka. Design/methodology/approach The methodology of this study is running under three main phases as follows. In the first phase, traditional grey operational mechanisms, namely, GM(1,1), unbiased GM(1,1) and nonlinear grey Bernoulli model, are used. In the second phase, the new proposed hybrid approach, namely, UBGM_BPNN was implemented successfully for forecasting short-term predictions under high volatility. In the last stage, to pick out the most suitable model for forecasting with a limited number of observations, three model-accuracy standards were employed. They are mean absolute deviation, mean absolute percentage error and root-mean-square error. Findings The empirical results disclosed that the UNBG_BPNN model gives the minimum error accuracies in both training and testing stages. Furthermore, results indicated that UNBG_BPNN affords the best simulation result than other selected models. Practical implications The authors strongly believe that this study will provide significant contributions to domestic and international policy makers as well as government to open up a new direction to develop investments in the future. Originality/value The new proposed UBGM_BPNN hybrid forecasting methodology is better to handle incomplete, noisy, and uncertain data in both model building and ex post testing stages.

Author(s):  
Kathiresh Mayilsamy ◽  
Maideen Abdhulkader Jeylani A, ◽  
Mahaboob Subahani Akbarali ◽  
Haripranesh Sathiyanarayanan

Purpose The purpose of this paper is to develop a hybrid algorithm, which is a blend of auto-regressive integral moving average (ARIMA) and multilayer perceptron (MLP) for addressing the non-linearity of the load time series. Design/methodology/approach Short-term load forecasting is a complex process as the nature of the load-time series data is highly nonlinear. So, only ARIMA-based load forecasting will not provide accurate results. Hence, ARIMA is combined with MLP, a deep learning approach that models the resultant data from ARIMA and processes them further for Modelling the non-linearity. Findings The proposed hybrid approach detects the residuals of the ARIMA, a linear statistical technique and models these residuals with MLP neural network. As the non-linearity of the load time series is approximated in this error modeling process, the proposed approach produces accurate forecasting results of the hourly loads. Originality/value The effectiveness of the proposed approach is tested in the laboratory with the real load data of a metropolitan city from South India. The performance of the proposed hybrid approach is compared with the conventional methods based on the metrics such as mean absolute percentage error and root mean square error. The comparative results show that the proposed prediction strategy outperforms the other hybrid methods in terms of accuracy.


Author(s):  
Debasis Mithiya ◽  
Lakshmikanta Datta ◽  
Kumarjit Mandal

Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the second most important role in Indian agricultural economy, next to food grains, in terms of area and production. Oilseeds production in India has increased with time, however, the increasing demand for edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign exchange. The need for addressing this deficit motivated a systematic study of the oilseeds economy to formulate appropriate strategies to bridge the demand-supply gap. In this study, an effort is made to forecast oilseeds production by using Autoregressive Integrated Moving Average (ARIMA) model, which is the most widely used model for forecasting time series. One of the main drawbacks of this model is the presumption of linearity. The Group Method of Data Handling (GMDH) model has also been applied for forecasting the oilseeds production because it contains nonlinear patterns. Both ARIMA and GMDH are mathematical models well-known for time series forecasting. The results obtained by the GMDH are compared with the results of ARIMA model. The comparison of modeling results shows that the GMDH model perform better than the ARIMA model in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The experimental results of both models indicate that the GMDH model is a powerful tool to handle the time series data and it provides a promising technique in time series forecasting methods.


2019 ◽  
Vol 10 (3) ◽  
pp. 915
Author(s):  
Ali Ebrahimi Ghahnavieh

Every player in the market has a greater need to know about the smallest change in the market. Therefore, the ability to see what is ahead is a valuable advantage. The purpose of this research is to make an attempt to understand the behavioral patterns and try to find a new hybrid forecasting approach based on ARIMA-ANN for estimating styrene price. The time series analysis and forecasting is an essential tool which could be widely useful for finding the significant characteristics for making future decisions. In this study ARIMA, ANN and Hybrid ARIMA-ANN models were applied to evaluate the previous behavior of a time series data, in order to make interpretations about its future behavior for styrene price. Experimental results with real data sets show that the combined model can be most suitable to improve forecasting accurateness rather than traditional time series forecasting methodologies. As a subset of the literature, the small number of studies have been done to realize the new forecasting methods for forecasting styrene price.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maryam Bahrami ◽  
Mehdi Khashei ◽  
Atefeh Amindoust

Purpose The purpose of this paper, because of the complexity of demand time series and the need to construct a more accurate hybrid model that can model all relationships in data, is to propose a parallel-series hybridization of seasonal neural networks and statistical models for demand time series forecasting. Design/methodology/approach The main idea of proposed model is centered around combining parallel and series hybrid methodologies to use the benefit of unique advantages of both hybrid strategies as well as intelligent and classic seasonal time series models simultaneously for achieving results that are more accurate for the first time. In the proposed model, in contrast of traditional parallel and series hybrid strategies, it can be generally shown that the performance of the proposed model will not be worse than components. Findings Empirical results of forecasting two well-known seasonal time series data sets, including the total production value of the Taiwan machinery industry and the sales volume of soft drinks, indicate that the proposed model can effectively improve the forecasting accuracy achieved by either of their components used in isolation. In addition, the proposed model can achieve more accurate results than parallel and series hybrid model with same components. Therefore, the proposed model can be used as an appropriate alternative model for seasonal time series forecasting, especially when higher forecasting accuracy is needed. Originality/value To the best of the authors’ knowledge, the proposed model, for first time and in contrast of traditional parallel and series hybrid strategies, is developed.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3299
Author(s):  
Ashish Shrestha ◽  
Bishal Ghimire ◽  
Francisco Gonzalez-Longatt

Withthe massive penetration of electronic power converter (EPC)-based technologies, numerous issues are being noticed in the modern power system that may directly affect system dynamics and operational security. The estimation of system performance parameters is especially important for transmission system operators (TSOs) in order to operate a power system securely. This paper presents a Bayesian model to forecast short-term kinetic energy time series data for a power system, which can thus help TSOs to operate a respective power system securely. A Markov chain Monte Carlo (MCMC) method used as a No-U-Turn sampler and Stan’s limited-memory Broyden–Fletcher–Goldfarb–Shanno (LM-BFGS) algorithm is used as the optimization method here. The concept of decomposable time series modeling is adopted to analyze the seasonal characteristics of datasets, and numerous performance measurement matrices are used for model validation. Besides, an autoregressive integrated moving average (ARIMA) model is used to compare the results of the presented model. At last, the optimal size of the training dataset is identified, which is required to forecast the 30-min values of the kinetic energy with a low error. In this study, one-year univariate data (1-min resolution) for the integrated Nordic power system (INPS) are used to forecast the kinetic energy for sequences of 30 min (i.e., short-term sequences). Performance evaluation metrics such as the root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE) of the proposed model are calculated here to be 4.67, 3.865, 0.048, and 8.15, respectively. In addition, the performance matrices can be improved by up to 3.28, 2.67, 0.034, and 5.62, respectively, by increasing MCMC sampling. Similarly, 180.5 h of historic data is sufficient to forecast short-term results for the case study here with an accuracy of 1.54504 for the RMSE.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ari Wibisono ◽  
Petrus Mursanto ◽  
Jihan Adibah ◽  
Wendy D. W. T. Bayu ◽  
May Iffah Rizki ◽  
...  

Abstract Real-time information mining of a big dataset consisting of time series data is a very challenging task. For this purpose, we propose using the mean distance and the standard deviation to enhance the accuracy of the existing fast incremental model tree with the drift detection (FIMT-DD) algorithm. The standard FIMT-DD algorithm uses the Hoeffding bound as its splitting criterion. We propose the further use of the mean distance and standard deviation, which are used to split a tree more accurately than the standard method. We verify our proposed method using the large Traffic Demand Dataset, which consists of 4,000,000 instances; Tennet’s big wind power plant dataset, which consists of 435,268 instances; and a road weather dataset, which consists of 30,000,000 instances. The results show that our proposed FIMT-DD algorithm improves the accuracy compared to the standard method and Chernoff bound approach. The measured errors demonstrate that our approach results in a lower Mean Absolute Percentage Error (MAPE) in every stage of learning by approximately 2.49% compared with the Chernoff Bound method and 19.65% compared with the standard method.


2016 ◽  
Vol 50 (1) ◽  
pp. 41-57 ◽  
Author(s):  
Linghe Huang ◽  
Qinghua Zhu ◽  
Jia Tina Du ◽  
Baozhen Lee

Purpose – Wiki is a new form of information production and organization, which has become one of the most important knowledge resources. In recent years, with the increase of users in wikis, “free rider problem” has been serious. In order to motivate editors to contribute more to a wiki system, it is important to fully understand their contribution behavior. The purpose of this paper is to explore the law of dynamic contribution behavior of editors in wikis. Design/methodology/approach – After developing a dynamic model of contribution behavior, the authors employed both the metrological and clustering methods to process the time series data. The experimental data were collected from Baidu Baike, a renowned Chinese wiki system similar to Wikipedia. Findings – There are four categories of editors: “testers,” “dropouts,” “delayers” and “stickers.” Testers, who contribute the least content and stop contributing rapidly after editing a few articles. After editing a large amount of content, dropouts stop contributing completely. Delayers are the editors who do not stop contributing during the observation time, but they may stop contributing in the near future. Stickers, who keep contributing and edit the most content, are the core editors. In addition, there are significant time-of-day and holiday effects on the number of editors’ contributions. Originality/value – By using the method of time series analysis, some new characteristics of editors and editor types were found. Compared with the former studies, this research also had a larger sample. Therefore, the results are more scientific and representative and can help managers to better optimize the wiki systems and formulate incentive strategies for editors.


2021 ◽  
Vol 3 (2) ◽  
pp. 81-86
Author(s):  
O. Yu. Mulesa ◽  
◽  
F. E. Geche ◽  
A. Ye. Batyuk ◽  
O. O. Melnyk ◽  
...  

The study is devoted to the development of information technology for forecasting based on time series. It has been found that it is important to develop new models and forecasting methods to improve the quality of the forecast. Information technology is based on the evolutionary method of synthesis of the forecast scheme grounded on basic forecast models. The selected method allows you to consider any number of predictive models that may belong to different classes. For a given time series, the weight coefficients with which the models are included in the resulting forecast scheme are calculated by finding the solution to the optimization problem. The method of constructing the objective function for the optimization problem in the form of a linear combination of forecasting results by basic forecasting models is shown. It is proposed to find the solution to the optimization problem using a genetic algorithm. The result of the method is the forecast scheme, which is a linear combination of basic forecast models. To assess the quality of the forecast, it is suggested to use forecasting errors or forecast volatility calculated as the standard deviation. Forecast quality criteria are selected depending on the context of the task. The use of forecast volatility as a quality criterion, with repeated use of technology, will reduce the deviation of forecast values from real data. The structural scheme of information technology is developed. Structurally, information technology consists of two blocks: data processing and interpretation of the obtained values. The result of the application of the developed information technology is the production rules for determining the predicted value of the studied quantity. Experimental verification of the obtained results was performed. The problem of forecasting the number of religious organizations in Ukraine based on statistical data from 1997 to 2000 has been solved. The autoregression method and the linear regression model were chosen as the basic forecast models. Based on the results of using the developed information technology, the weights of the basic models were calculated. It is demonstrated that the obtained forecast scheme allowed to improve the average absolute percentage error and forecast volatility in comparison with the selected models. Keywords: information technology; time series; forecasting; evolutionary technologies; forecast volatility; synthesis of the forecast scheme.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7183 ◽  
Author(s):  
Hafiza Mamona Nazir ◽  
Ijaz Hussain ◽  
Ishfaq Ahmad ◽  
Muhammad Faisal ◽  
Ibrahim M. Almanjahie

Due to non-stationary and noise characteristics of river flow time series data, some pre-processing methods are adopted to address the multi-scale and noise complexity. In this paper, we proposed an improved framework comprising Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Empirical Bayesian Threshold (CEEMDAN-EBT). The CEEMDAN-EBT is employed to decompose non-stationary river flow time series data into Intrinsic Mode Functions (IMFs). The derived IMFs are divided into two parts; noise-dominant IMFs and noise-free IMFs. Firstly, the noise-dominant IMFs are denoised using empirical Bayesian threshold to integrate the noises and sparsities of IMFs. Secondly, the denoised IMF’s and noise free IMF’s are further used as inputs in data-driven and simple stochastic models respectively to predict the river flow time series data. Finally, the predicted IMF’s are aggregated to get the final prediction. The proposed framework is illustrated by using four rivers of the Indus Basin System. The prediction performance is compared with Mean Square Error, Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). Our proposed method, CEEMDAN-EBT-MM, produced the smallest MAPE for all four case studies as compared with other methods. This suggests that our proposed hybrid model can be used as an efficient tool for providing the reliable prediction of non-stationary and noisy time series data to policymakers such as for planning power generation and water resource management.


2018 ◽  
Vol 11 (4) ◽  
pp. 486-495
Author(s):  
Ke Yi Zhou ◽  
Shaolin Hu

Purpose The similarity measurement of time series is an important research in time series detection, which is a basic work of time series clustering, anomaly discovery, prediction and many other data mining problems. The purpose of this paper is to design a new similarity measurement algorithm to improve the performance of the original similarity measurement algorithm. The subsequence morphological information is taken into account by the proposed algorithm, and time series is represented by a pattern, so the similarity measurement algorithm is more accurate. Design/methodology/approach Following some previous researches on similarity measurement, an improved method is presented. This new method combines morphological representation and dynamic time warping (DTW) technique to measure the similarities of time series. After the segmentation of time series data into segments, three parameter values of median, point number and slope are introduced into the improved distance measurement formula. The effectiveness of the morphological weighted DTW algorithm (MW-DTW) is demonstrated by the example of momentum wheel data of an aircraft attitude control system. Findings The improved method is insensitive to the distortion and expansion of time axis and can be used to detect the morphological changes of time series data. Simulation results confirm that this method proposed in this paper has a high accuracy of similarity measurement. Practical implications This improved method has been used to solve the problem of similarity measurement in time series, which is widely emerged in different fields of science and engineering, such as the field of control, measurement, monitoring, process signal processing and economic analysis. Originality/value In the similarity measurement of time series, the distance between sequences is often used as the only detection index. The results of similarity measurement should not be affected by the longitudinal or transverse stretching and translation changes of the sequence, so it is necessary to incorporate the morphological changes of the sequence into similarity measurement. The MW-DTW is more suitable for the actual situation. At the same time, the MW-DTW algorithm reduces the computational complexity by transforming the computational object to subsequences.


Sign in / Sign up

Export Citation Format

Share Document