On the performance of RANS turbulence models in predicting static stall over airfoils at high Reynolds numbers

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. R. Nived ◽  
Bandi Sai Mukesh ◽  
Sai Saketha Chandra Athkuri ◽  
Vinayak Eswaran

Purpose This paper aims to conduct, a detailed investigation of various Reynolds averaged Navier–Stokes (RANS) models to study their performance in attached and separated flows. The turbulent flow over two airfoils, namely, National Advisory Committee for Aeronautics (NACA)-0012 and National Aeronautics and Space Administration (NASA) MS(1)-0317 with a static stall setup at a Reynolds number of 6 million, is chosen to investigate these models. The pre-stall and post-stall regions, which are in the range of angles of attack 0°–20°, are simulated. Design/methodology/approach RANS turbulence models with the Boussinesq approximation are the most commonly used cost-effective models for engineering flows. Four RANS models are considered to predict the static stall of two airfoils: Spalart–Allmaras (SA), Menter’s k – ω shear stress transport (SST), k – kL and SA-Bas Cakmakcioglu modified (BCM) transition model. All the simulations are performed on an in-house unstructured-grid compressible flow solver. Findings All the turbulence models considered predicted the lift and drag coefficients in good agreement with experimental data for both airfoils in the attached pre-stall region. For the NACA-0012 airfoil, all models except the SA-BCM over-predicted the stall angle by 2°, whereas SA-BCM failed to predict stall. For the NASA MS(1)-0317 airfoil, all models predicted the lift and drag coefficients accurately for attached flow. But the first three models showed even further delayed stall, whereas SA-BCM again did not predict stall. Originality/value The numerical results at high Re obtained from this work, especially that of the NASA MS(1)-0317, are new to the literature in the knowledge of the authors. This paper highlights the inability of RANS models to predict the stall phenomenon and suggests a need for improvement in modeling flow physics in near- and post-stall flows.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kudzai Chipongo ◽  
Mehdi Khiadani ◽  
Kaveh Sookhak Lari

Abstract The robustness and accuracy of Reynolds-averaged Navier–Stokes (RANS) models was investigated for complex turbulent flow in an open channel receiving lateral inflow, also known as spatially varied flow with increasing discharge (SVF). The three RANS turbulence models tested include realizable k–ε, shear stress transport k–ω and Reynolds stress model based on their prominence to model jets in crossflows. Results were compared to experimental laser Doppler velocimetry measurements from a previous study. RANS results in the uniform flow region and farther from the jet centreline were more accurate than within the lateral inflow region. On the leeward side of the jet, RANS models failed to capture the downward velocity vectors resulting in major deviations in vertical velocity. Among RANS models minor variations were noted at impingement and near the water surface. Regardless of inadequately predicting complex characteristics of SVF, RANS models matched experimental water surface profiles and proved more superior to the theoretical approach currently used for design purposes.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 148 ◽  
Author(s):  
Chunhui Zhang ◽  
Charles Patrick Bounds ◽  
Lee Foster ◽  
Mesbah Uddin

In today’s road vehicle design processes, Computational Fluid Dynamics (CFD) has emerged as one of the major investigative tools for aerodynamics analyses. The age-old CFD methodology based on the Reynolds Averaged Navier–Stokes (RANS) approach is still considered as the most popular turbulence modeling approach in automotive industries due to its acceptable accuracy and affordable computational cost for predicting flows involving complex geometries. This popular use of RANS still persists in spite of the well-known fact that, for automotive flows, RANS turbulence models often fail to characterize the associated flow-field properly. It is even true that more often, the RANS approach fails to predict correct integral aerodynamic quantities like lift, drag, or moment coefficients, and as such, they are used to assess the relative magnitude and direction of a trend. Moreover, even for such purposes, notable disagreements generally exist between results predicted by different RANS models. Thanks to fast advances in computer technology, increasing popularity has been seen in the use of the hybrid Detached Eddy Simulation (DES), which blends the RANS approach with Large Eddy Simulation (LES). The DES methodology demonstrated a high potential of being more accurate and informative than the RANS approaches. Whilst evaluations of RANS and DES models on various applications are abundant in the literature, such evaluations on full-car models are relatively fewer. In this study, four RANS models that are widely used in engineering applications, i.e., the realizable k - ε two-layer, Abe–Kondoh–Nagano (AKN) k - ε low-Reynolds, SST k - ω , and V2F are evaluated on a full-scale passenger vehicle with two different front-end configurations. In addition, both cases are run with two DES models to assess the differences between the flow predictions obtained using RANS and DES.


Author(s):  
Darrin W. Stephens ◽  
Aleksandar Jemcov ◽  
Chris Sideroff

In this work verification and validation of Reynolds Averaged Navier-Stokes (RANS) turbulence models for incompressible flows was performed on the numerical library, Caelus [1]. Caelus is free and open source licensed under the GNU Public License (GPL). The focus of this study is on the verification and validation of the k-ω SST [2, 3], Spalart-Allmaras [4], and realizable k-ε models [5]. The cases used in this work include the zero pressure gradient flat plate, two-dimensional bump in a channel flow, NACA 0012 airfoil, and backward facing step. All cases except the backward facing step include mesh dependency studies. A comprehensive description of the test cases and computed results are provided. The results were, in general, found to be in excellent agreement with external data suggesting that the turbulence model implementations in Caelus are correct. A companion study on verification and validation of a predictor corrector steady-state solver algorithm [6] had similar goals and results as this work.


2021 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Shanti Bhushan ◽  
Oumnia El Fajri ◽  
Graham Hubbard ◽  
Bradley Chambers ◽  
Christopher Kees

This study evaluates the capability of Navier–Stokes solvers in predicting forward and backward plunging breaking, including assessment of the effect of grid resolution, turbulence model, and VoF, CLSVoF interface models on predictions. For this purpose, 2D simulations are performed for four test cases: dam break, solitary wave run up on a slope, flow over a submerged bump, and solitary wave over a submerged rectangular obstacle. Plunging wave breaking involves high wave crest, plunger formation, and splash up, followed by second plunger, and chaotic water motions. Coarser grids reasonably predict the wave breaking features, but finer grids are required for accurate prediction of the splash up events. However, instabilities are triggered at the air–water interface (primarily for the air flow) on very fine grids, which induces surface peel-off or kinks and roll-up of the plunger tips. Reynolds averaged Navier–Stokes (RANS) turbulence models result in high eddy-viscosity in the air–water region which decays the fluid momentum and adversely affects the predictions. Both VoF and CLSVoF methods predict the large-scale plunging breaking characteristics well; however, they vary in the prediction of the finer details. The CLSVoF solver predicts the splash-up event and secondary plunger better than the VoF solver; however, the latter predicts the plunger shape better than the former for the solitary wave run-up on a slope case.


2000 ◽  
Vol 122 (4) ◽  
pp. 294-300 ◽  
Author(s):  
Karl W. Schulz ◽  
Yannis Kallinderis

A generalized numerical method for solution of the incompressible Navier-Stokes equations in three-dimensions has been developed. This solution methodology allows for the accurate prediction of the hydrodynamic loads on offshore structures, which is then combined with a rigid body structural response to address the flow-structure coupling which is often present in offshore applications. Validation results using this method are first presented for fixed structures which compare the drag coefficients of sphere and cylinder geometries to experimental measurements over a range of subcritical Reynolds numbers. Additional fixed structure results are then presented which explore the influence of aspect ratio effects on the lift and drag coefficients of a bare circular cylinder. Finally, the spanwise flow variations between a fixed and freely vibrating cylindrical structure are compared to demonstrate the ability of the flow-structure method to correctly predict correlation length increases for a vibrating structure. [S0892-7219(00)00904-3]


1970 ◽  
Vol 4 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Md Mahbubar Rahman ◽  
Md. Mashud Karim ◽  
Md Abdul Alim

The dynamic characteristics of the pressure and velocity fields of unsteady incompressible laminar and turbulent wakes behind a circular cylinder are investigated numerically and analyzed physically. The governing equations, written in the velocity pressure formulation are solved using 2-D finite volume method. The initial mechanism for vortex shedding is demonstrated and unsteady body forces are evaluated. The turbulent flow for Re = 1000 & 3900 are simulated using k-? standard, k-? Realizable and k-? SST turbulence models. The capabilities of these turbulence models to compute lift and drag coefficients are also verified. The frequencies of the drag and lift oscillations obtained theoretically agree well with the experimental results. The pressure and drag coefficients for different Reynolds numbers were also computed and compared with experimental and other numerical results. Due to faster convergence, 2-D finite volume method is found very much prospective for turbulent flow as well as laminar flow.Keywords: Viscous unsteady flow, laminar & turbulent flow, finite volume method, circular cylinder.DOI: 10.3329/jname.v4i1.914Journal of Naval Architecture and Marine Engineering 4(2007) 27-42


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
C. Chin ◽  
M. Li ◽  
C. Harkin ◽  
T. Rochwerger ◽  
L. Chan ◽  
...  

A numerical study of compressible jet flows is carried out using Reynolds averaged Navier–Stokes (RANS) turbulence models such as k-ɛ and k-ω-SST. An experimental investigation is performed concurrently using high-speed optical methods such as Schlieren photography and shadowgraphy. Numerical and experimental studies are carried out for the compressible impinging at various impinging angles and nozzle-to-wall distances. The results from both investigations converge remarkably well and agree with experimental data from the open literature. From the flow visualizations of the velocity fields, the RANS simulations accurately model the shock structures within the core jet region. The first shock cell is found to be constraint due to the interaction with the bow-shock structure for nozzle-to-wall distance less than 1.5 nozzle diameter. The results from the current study show that the RANS models utilized are suitable to simulate compressible free jets and impinging jet flows with varying impinging angles.


Author(s):  
Van Huyen Vu ◽  
Benoît Trouette ◽  
Quy Dong TO ◽  
Eric Chénier

Purpose This paper aims to extend the hybrid atomistic-continuum multiscale method developed by Vu et al. (2016) to study the gas flow problems in long microchannels involving density variations. Design/methodology/approach The simulation domain is decomposed into three regions: the bulk where the continuous Navier–Stokes and energy equations are solved, the neighbourhood of the wall simulated by molecular dynamics and the overlap region which connects the macroscopic variables (density, velocity and temperature) between the two former regions. For the simulation of long micro/nanochannels, a strategy with multiple molecular blocks all along the fluid/solid interface is adopted to capture accurately the macroscopic velocity and temperature variations. Findings The validity of the hybrid method is shown by comparisons with a simplified analytical model in the molecular region. Applications to compressible and condensation problems are also presented, and the results are discussed. Originality/value The hybrid method proposed in this paper allows cost-effective computer simulations of large-scale problems with an accurate modelling of the transfers at small scales (velocity slip, temperature jump, thin condensation films, etc.).


2016 ◽  
Vol 40 (3) ◽  
pp. 317-329 ◽  
Author(s):  
Mustafa Kemal Isman

The turbulent flow over backward-facing step (BFS) is numerically investigated by using FLUENT® code. Both uniform and non-uniform velocity profiles are used as inlet boundary condition. Five different Reynolds averaged Navier–Stokes (RANS) turbulence models are employed. The Std. k–ω model shows the best agreement with the experimental data among the models used under the conditions considered in this study. The results show that using a uniform velocity profile has a negative effect on predictions if the domain is not sufficiently extended upstream from the inlet. To eliminate this effect, the domain should be extended upstream by about 10Dh from the inlet. However, results show that this extension causes absorption effects of inlet parameters such as inlet turbulence intensity.


Author(s):  
Charles Farbos de Luzan ◽  
Yuri Perelstein ◽  
Ephraim Gutmark ◽  
Thomas Frosell ◽  
Frederic Felten

A coaxial piping system (CPS) that involves a transition from a smaller annulus into a larger annulus is investigated to evaluate the generation of vortices and recirculation zones around the transition area. These areas are of interest for industrial applications where erosion within the piping system is a concern. The focus of this work is to evaluate the capabilities of Computational Fluid Dynamics (CFD) using commercial Reynolds-Averaged Navier Stokes (RANS) models to predict the regions and intensity of vortices and recirculation zones. A trusted grid is developed and used to compare turbulence models. The commercial CFD solver Fluent (Ansys Inc., USA) is used to solve the flow governing equations for different CFD numerical formulations, namely the one equation Spalart-Allmaras model, and steady-state RANS with different turbulence models (standard k-epsilon, k-epsilon realizable, k-epsilon RNG, standard k-omega, k-omega SST, and transition SST) [1]. CFD results are compared to time-averaged particle image velocimetry (PIV) measurements. The PIV provides 3D flow field measurements in the outer annulus of the piping system. Velocities in regions of interest were used to compare each model to the PIV results. An RMS comparison of the numerical results to the measured values is used as a quantitative evaluation of each turbulence model being considered. The results provide a useable CFD model for evaluation of the flow field of this flow field and highlights areas of uncertainty in the CFD results.


Sign in / Sign up

Export Citation Format

Share Document