Abuse of Empire style robe to thermal insulation and body discomfort

2015 ◽  
Vol 27 (4) ◽  
pp. 587-599 ◽  
Author(s):  
Youngjoo Na ◽  
Jisu Kim

Purpose – Empire style fashion, Greek-Roman style robe with bare shoulder and chest and short sleeved with long gloves which created a slim silhouette, was worn even in winter season in Europe, where average temperature is 0-5°C. Most women suffered with catching cold and thousands caught flu and tuberculosis of the lungs, called muslin disease. The purpose of this paper is to find out clothing insulation of the robe by measuring the thermal resistance and to guess how cold they felt in this robe in winter time. Design/methodology/approach – The authors performed the investigation on original robe shape with based on historical evidence and data, such as drawings, sketches, pattern books and sewing books, and reproduced a representative robe costume and tested its thermal insulation. The fabrics of robe were thin wool, silk and cotton following the literature evidence and preserved costume. Thermal insulation of the robes was measured using thermal manikin with the test method ISO 15831. The authors analyzed the thermal insulation of reconstructed robes with an inner cotton breech as for daily use and tested them wrapped with cashmere shawl on manikin shoulder as for severe cold weather. Findings – The dress robes had the range of 0.61-0.67 clo regardless of the type of fabric materials, and 0.80-0.81 clo with the cashmere shawl. These values were not enough for women to keep body temperature or comfort in winter time. Originality/value – This study combined fashion historic theory for costume reproduction with clothing science and technology for thermal insulation. Combination of costume history, construction technology and measurement engineering is the ingenious idea, and the combination of historical and scientific research evidences interdisciplinary originality.

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2672
Author(s):  
Dubravko Rogale ◽  
Goran Majstorović ◽  
Snježana Firšt Rogale

This paper presents the measurement results of the thermal insulation of the outer shell, thermal inserts, and clothing systems, as well as a comparative analysis of the thermal insulation of multi-layer thermal inserts in a thermal jacket intended for professional services in cold weather. Detachable thermal inserts are made of double-faced, diamond-shaped quilted lining with different masses per unit area, and together with the jacket, they form clothing systems with different thermal properties. Tests of the thermal properties of clothing were performed on a thermal manikin. They showed that an increase in the mass of thermal insulation textile materials contributes to an increase in the thermal insulation properties of clothing and are insufficient for a complete analysis of the thermal properties of clothing. Therefore, for the first time, three new parameters of integration efficiency of the thermal insert, thermal insulation efficiency parameters, and efficiency parameters of the integration of the textile material integrated into the clothing system were introduced. Based on these parameters, it is possible to perform an effective and accurate comparative analysis of the thermal insulation of multi-layer thermal inserts in clothing. This makes it possible to apply exact scientific methods largely in the technical design of the thermal properties of integrated textile materials, instead of experience-based methods as in the past.


2011 ◽  
Vol 332-334 ◽  
pp. 1927-1930 ◽  
Author(s):  
Xiang Hui Zhang ◽  
Jun Li

This paper reports on an experimental investigation of the effects of clothing ventilative designs on thermal comfort measured in terms of thermal insulation. Eight T-shirts with varying areas and locations of mesh fabric were designed and produced for testing on a dry thermal manikin. Clothing thermal insulation of T-shirts was measured under three wind velocities: 0.5, 1 and 2m/s. The results showed that, the areas and locations of ventilation panels affect the total thermal insulation. The T-shirts with larger area of mesh fabric are preferable in terms of releasing more body heat. Among various designs tested, mesh fabrics applied at two vertical side seams can most effectively release heat and moisture from the body. Clothing insulation is also greatly affected by wind.


2020 ◽  
pp. 004051752096671
Author(s):  
Dubravko Rogale ◽  
Snježana Firšt Rogale ◽  
Goran Majstorović ◽  
Goran Čubrić

The paper presents the investigation of thermal properties of thermal insulation chambers as an actuator in intelligent clothing, having the property of automatically adjusting the thermal protection level. The chambers are designed to vary their thickness based on the pressure of the inflated air in them. The pressure value measured in the thermal insulation chamber gives the microcomputer information on the thickness of the chamber. The paper presents the investigation of the functional dependencies of changes in the thickness of the chambers on the air pressure in them and the thermal resistance depending on the thickness of the thermal insulation chamber. Experimental thermal insulation chambers were made and integrated into an intelligent article of clothing and filled with air of 0–50 mbar, whereby chamber thicknesses of 0–25 mm were measured. Next, thermal resistance of 0.1876–0.5022 m2 k/W was measured on the thermal manikin. It was found that the ratio of thermal insulation of non-activated to maximally activated chambers was 1:2.7. Research has shown good results for the area where intelligent clothing can automatically adjust its thermal insulation properties. The technical systems described represent a suitable basis for experiments and scientific research during the introduction of intelligent clothing with active thermal protection into human life. The third-generation prototype shows very good properties from the aspect of automatic control of thermal protection in intelligent clothing. This forms the basis for further research. Cold protection has always been carried out by wearing garments with higher or lower thermal protection as well as wearing multiple layers of clothing. The conceptual starting point of the development of intelligent clothing is the development of an adaptive insulation layer with changeable thickness in the form of thermal insulation chambers filled with air. In this way, layered clothing as well as the use of several clothing layers can be avoided. Thus, one intelligent article of clothing regulating its thermal insulation properties can be used in a wide range of cold weather in the environment of the wearer.


2010 ◽  
Vol 636-637 ◽  
pp. 36-40 ◽  
Author(s):  
Iara Braga ◽  
M. José Abreu ◽  
F.M. Duarte

The thermal insulation of a clothing system represents a quantitative assessment of the way cloth provides thermal barrier to the user. One of this clothing systems, the surgical gown used in the operating theatre, is considered as a non-active medical device and obeys the Medical Device Directive 93/43/EEC. New materials and gowns are being developed, fitting the level of the barrier function with the comfort issues and therefore the selection of the most suitable gown is vital. During the last 60 years, thermal manikins have been used to measure clothing insulation and to assess the thermal environment regarding comfort issues. The main goal of the present study is the comparison of the thermal insulation values during the objective evaluation using the dry thermal manikin with the results obtained using an Infra-Red camera ThermaCAM, monitoring the temperature development of different surgical gowns at a constant skin temperature of 33 °C in neutral environmental conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiah Wardiningsih ◽  
Olga Troynikov

Purpose This paper aims to examine the influence of hip protective clothing on ensemble performance attributes related to thermal comfort. It also explores the effect on protective pads of various materials and the arrangements of material. The thermal comfort characteristics are thermal insulation and moisture vapour resistance. Design/methodology/approach For this research, four ensembles of clothing were used: one ensemble without hip protective clothing and three ensembles with hip protective clothing. A thermal manikin was used to test the thermal insulation and moisture vapour resistance of the ensembles. Findings The findings revealed that incorporating hip protective clothing into the clothing ensembles influenced the thermal resistance and moisture vapour resistance of the ensemble. In the “all zones group,” the influence of the hip protective clothing depended on clothing style, with hipster-style clothing producing insignificant changes. In the “hip zones group” and “stomach and hip zones group,” hip protective clothing strongly influenced the thermal comfort attributes of ensembles. Pad material and volume play important roles in these changes in thermal comfort attributes. Originality/value These outcomes are useful for the design and engineering of hip protective clothing, where maximizing protection while minimizing thermal and moisture vapour resistance is critical for wear comfort and adherence in warm or hot conditions. The designer should consider that material, volume and thickness of protective pad affect the overall thermal comfort attributes of the hip protective clothing.


2018 ◽  
Vol 30 (1) ◽  
pp. 82-100
Author(s):  
Anna Katarzyna Dabrowska

Purpose The purpose of this paper is to develop artificial neural networks (ANNs) allowing us to simulate the local thermal insulation of clothing protecting against cold on a basis of the characteristics of materials and design solutions used. Design/methodology/approach For this purpose, laboratory tests of thermal insulation of clothing protecting against cold as well as thermal resistance of textile systems used in the clothing were performed. These tests were conducted with a use of thermal manikin and so-called skin model, respectively. On a basis of results gathered, 12 ANNs were developed that correspond to each thermal manikin’s segment besides hands and feet which are not covered by protective clothing. Findings In order to obtain high level of simulations, optimization measures for the developed ANNs were introduced. Finally, conducted validation indicated a very high correlation (above 0.95) between theoretical and experimental results, as well as a low error of the simulations (max 8 percent). Originality/value The literature reports addressing the problem of modeling thermal insulation of clothing focus mainly on the impact of the degree of fit and the velocity of air movement on thermal insulation properties, whereas reports dedicated to modeling the impact of the construction of clothing protecting against cold as well as of diverse material systems used within one design of clothing on its thermal insulation are scarce.


2016 ◽  
Vol 20 (2) ◽  
pp. 112-123 ◽  
Author(s):  
Chupo Ho ◽  
Jintu Fan ◽  
Edward Newton ◽  
Raymond Au

Purpose Maintaining air circulation between the wearer and garment layer is crucial for activating heat and moisture transfer from the body. If an air gap is trapped, air circulation may become ineffective and the ventilation of the garment is, thus, hindered. To maintain and extend the air gap, this study aims to propose a design method that involves placing spacer blocks underneath the garment to prevent the fabric from clinging directly to the skin. Design/methodology/approach To study the application of this design method, a series of T-shirts were produced and tested using a thermal manikin in standing and walking postures. All the T-shirts were made of fabric ostensibly manufactured to have high air permeability. Porous mesh fabric was used to construct the vented panels on the T-shirts. The test was conducted in a chamber with controlled temperature, relative humidity and wind velocity. Total thermal insulation (Rt) and moisture vapour resistance (Ret) were measured. Findings The test results showed that extension of the air gap between wearer and fabric provided higher ventilation to the wearer if the vented panels were also present on the T-shirts. Different placements of the vented panels on the T-shirts also affected the heat and moisture transfer from the thermal manikin. Research limitations/implications Due to limited resources, the evaluation of total thermal insulation and moisture vapour resistance was based on the testing result from a thermal manikin instead of any subjective wearer trial. Practical implications This research can contribute to the clothing designer who is developing function wear for a better ventilation. Social implications This research can contribute to the clothing designer who is developing function wear for a better ventilation. Originality/value This study aimed to further develop a new design concept in T-shirt design by improving the construction of the spacer blocks. Fabric with higher air and water vapour permeability was used to determine to what extent this design method is applicable to higher performance on heat and moisture transfer.


2016 ◽  
Vol 28 (4) ◽  
pp. 492-502 ◽  
Author(s):  
Shurong Hu ◽  
Mengmeng Zhao ◽  
Jun Li

Purpose – The purpose of this paper is to explore the effects of wind direction and ease allowance on thermal comfort in sportswear. Design/methodology/approach – The effects of wind direction (front, side, back and calm (no wind) 1.5 m/s) and seven magnitudes of ease allowance on sportswear thermal insulation and surface temperature were investigated. An 11 zones’ thermal manikin was used to acquire the static thermal insulation. Surface temperature was captured by a thermal imager. Findings – The results showed that the wind was a significant effect on thermal performance, however, wind direction effect was only significant in the segment covered with multilayer fabric, such as the abdomen and hip (p=0.034). Although the ease allowance influenced the overall thermal insulation obviously, the difference between seven sizes suits was not significant. Nevertheless, the ease allowance affected the surface temperature of chest and back significantly (p=0.023, 0.007). Correlation between thermal insulation and surface temperature was negative, and correlation level was degraded when affected by wind factor. Research limitations/implications – Sportswear’s fabric and style did not discussed as effect factors. It would be taken into accounted in the future research. Originality/value – Wind direction impact thermal comfort in multilayer regions significantly. It is a reference to improve sportswear’s comfort design.


2017 ◽  
Vol 29 (5) ◽  
pp. 686-695 ◽  
Author(s):  
Yunlong Shi ◽  
Liang Wang ◽  
Xiaoming Qian

Purpose The purpose of this paper is to compare the evaporative resistance and thermal insulation of clothing measured by thermal manikin “Walter” using uniform and non-uniform skin. Design/methodology/approach The non-uniform skin with different perspiration rates was made by laminating a silicone layer on the inner side of a uniform skin. The thermal manikin was then covered with prepared non-uniform skin as well as uniform one. Four types of clothing ensembles were tested. Findings The relative intensity of perspiration rate was realized in different part of “Walter” skin, which was close to the perspiration rate of human being. There was a strong correlation between uniform skin and non-uniform skin. The thermal insulation and evaporative resistance of clothing measured on the non-uniform skin were higher than the ones determined on the uniform skin. However, their moisture permeability index showed the reversed tendency. Research limitations/implications The implication of the research is to investigate the differences between uniform skin and non-uniform skin for manikin “Walter.” This is possibly useful in correcting and predicting more accurate thermal insulation and evaporative resistance of clothing measured by “Walter” with a uniform skin in future. Originality/value It was more accurate using non-uniform skin in evaluating thermal and wet comfort comparing to uniform skin.


2016 ◽  
Vol 28 (6) ◽  
pp. 805-819 ◽  
Author(s):  
Anna Katarzyna Dabrowska

Purpose The purpose of this paper is to analyze the impact of design solutions used in clothing on the thermal resistance of the material systems from which the clothing is made, design solutions used in clothing on its thermal insulation and clothing size on its thermal insulation properties. Design/methodology/approach This study involved laboratory tests of clothing protecting against cold and textile systems used in this type of garment using a “skin model” test stand and a thermal manikin. Findings Analysis of the results obtained from tests carried out showed that the design solutions used in a garment can model its local and overall insulation. It was found that using a bib in trousers has a dominant influence on the thermal properties of clothing. An important parameter is also the use of a hood, as well as the length of the jacket. No significant effect of other structural solutions, such as jacket fastening, pockets and reflective tapes, on the thermal performance of the clothing set was noted. Originality/value Although the reports available in the literature pay a lot of attention to the impact of the design of clothing protecting against cold on its thermal performance, most of the presented research results relate to the aspects of fit, whereas the analyses of the effects of other aspects of garment construction on thermal properties are lacking. Therefore, the analysis of the impact of design solutions used in clothing on its thermal insulation properties is a key original factor of this paper.


Sign in / Sign up

Export Citation Format

Share Document