scholarly journals Comparative Analysis of the Thermal Insulation of Multi-Layer Thermal Inserts in a Protective Jacket

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2672
Author(s):  
Dubravko Rogale ◽  
Goran Majstorović ◽  
Snježana Firšt Rogale

This paper presents the measurement results of the thermal insulation of the outer shell, thermal inserts, and clothing systems, as well as a comparative analysis of the thermal insulation of multi-layer thermal inserts in a thermal jacket intended for professional services in cold weather. Detachable thermal inserts are made of double-faced, diamond-shaped quilted lining with different masses per unit area, and together with the jacket, they form clothing systems with different thermal properties. Tests of the thermal properties of clothing were performed on a thermal manikin. They showed that an increase in the mass of thermal insulation textile materials contributes to an increase in the thermal insulation properties of clothing and are insufficient for a complete analysis of the thermal properties of clothing. Therefore, for the first time, three new parameters of integration efficiency of the thermal insert, thermal insulation efficiency parameters, and efficiency parameters of the integration of the textile material integrated into the clothing system were introduced. Based on these parameters, it is possible to perform an effective and accurate comparative analysis of the thermal insulation of multi-layer thermal inserts in clothing. This makes it possible to apply exact scientific methods largely in the technical design of the thermal properties of integrated textile materials, instead of experience-based methods as in the past.

2020 ◽  
pp. 004051752096671
Author(s):  
Dubravko Rogale ◽  
Snježana Firšt Rogale ◽  
Goran Majstorović ◽  
Goran Čubrić

The paper presents the investigation of thermal properties of thermal insulation chambers as an actuator in intelligent clothing, having the property of automatically adjusting the thermal protection level. The chambers are designed to vary their thickness based on the pressure of the inflated air in them. The pressure value measured in the thermal insulation chamber gives the microcomputer information on the thickness of the chamber. The paper presents the investigation of the functional dependencies of changes in the thickness of the chambers on the air pressure in them and the thermal resistance depending on the thickness of the thermal insulation chamber. Experimental thermal insulation chambers were made and integrated into an intelligent article of clothing and filled with air of 0–50 mbar, whereby chamber thicknesses of 0–25 mm were measured. Next, thermal resistance of 0.1876–0.5022 m2 k/W was measured on the thermal manikin. It was found that the ratio of thermal insulation of non-activated to maximally activated chambers was 1:2.7. Research has shown good results for the area where intelligent clothing can automatically adjust its thermal insulation properties. The technical systems described represent a suitable basis for experiments and scientific research during the introduction of intelligent clothing with active thermal protection into human life. The third-generation prototype shows very good properties from the aspect of automatic control of thermal protection in intelligent clothing. This forms the basis for further research. Cold protection has always been carried out by wearing garments with higher or lower thermal protection as well as wearing multiple layers of clothing. The conceptual starting point of the development of intelligent clothing is the development of an adaptive insulation layer with changeable thickness in the form of thermal insulation chambers filled with air. In this way, layered clothing as well as the use of several clothing layers can be avoided. Thus, one intelligent article of clothing regulating its thermal insulation properties can be used in a wide range of cold weather in the environment of the wearer.


2021 ◽  
Vol 1 (80) ◽  
pp. 45-67
Author(s):  
Marzena Rachwał ◽  
Małgorzata Majder-Łopatka ◽  
Tomasz Węsierski ◽  
Artur Ankowski ◽  
Magdalena Młynarczyk ◽  
...  

Every day, firefighters put their health and life at risk by saving people and their property not only during fires, but by being always ready during all kinds of unfortunate events. Therefore, they need special personal protective equipment, including protective clothing. The purpose of the study was to compare thermal properties of new (PROTON and SYRIUSZ) and old (US-03) personal protective clothing for firefighters. Measurements of thermal insulation (total, effective and local) were carried out using a full body shape thermal manikin Newton consisting of 34 segments, in which temperature and heat flux were controlled independently. Results of the total thermal insulation of the entire clothing reveal differences between all three models. The lowest values were noticed for the model PROTON with light and shorter jacket and the highest values of thermal insulation for the new model SYRIUSZ, indicating that this model protect the user against heat most effectively. New models of personal protective clothing for firefighters should be recommended for use in everyday work, because they are characterized by better parameters than the previous type of protective clothing, both in terms of thermal protection and mobility.


2020 ◽  
Vol 20 (3) ◽  
pp. 228-243
Author(s):  
Ivana Špelić ◽  
Dubravko Rogale ◽  
Alka Mihelić Bogdanić

AbstractFormer studies done by other authors investigated the first- and second-layered air gaps beneath the clothing garments. None of the previous studies reported multidisciplinary clothing design testing approach linking both the objective measuring methods and subjective responses, while testing the thermal properties linked to a microclimatic volume formed between the layers of garments forming the ensemble. Neither was determined the limiting value of the microclimatic volume for outerwear garments, after which the thermal insulation will start to decrease due to convection. By taking the advantage of the precise three-dimensional (3D) body scanning technology and reverse engineering 3D CAD tool, the volume of the microclimatic air layers formed under outerwear garments was determined to study the impact of the ensemble’s microclimatic volume on the overall insulation value, measured by means of the thermal manikin. The jacket with the smaller microclimatic volume provided 5.2–13.5% less insulation than wider jackets, while the ensembles with tighter jackets showed 0.74–1.9% less insulation in static and 0.9–2.7% more insulation in dynamic conditions, thus proving that the limiting value of the microclimatic volume is greater than previously reported for three-layered ensembles. The effective thermal insulation value was reduced in average by 20.98–25.34% between standing and moving manikins. The thermal manikins are designed for steady-state measurements and do not work well under transient conditions, so three human subjects were employed as evaluators of the clothing thermal quality. In cooler climatic conditions, the measured physiological parameters and subjects’ grades pointed to discomfort while wearing ensembles with tighter jackets.


2018 ◽  
Vol 26 (5(131)) ◽  
pp. 75-80 ◽  
Author(s):  
Wioleta Serweta ◽  
Małgorzata Matusiak ◽  
Zbigniew Olejniczak ◽  
Jolanta Jagiełło ◽  
Justyna Wójcik

The aim of this study was the analysis of the thermal resistance of upper textile materials combined with leather or textile linings. Following a comparative analysis of the combinations of materials tested, the best insulators werre recommended. Footwear material packages were created on the basis of the analysis of hygienic properties of textile and leather materials, which were available on the market. Hygienic properties like water vapour permeability and water vapour absorption gave information about the possibility to apply these materials from a microclimate point of view.


2016 ◽  
Vol 28 (6) ◽  
pp. 805-819 ◽  
Author(s):  
Anna Katarzyna Dabrowska

Purpose The purpose of this paper is to analyze the impact of design solutions used in clothing on the thermal resistance of the material systems from which the clothing is made, design solutions used in clothing on its thermal insulation and clothing size on its thermal insulation properties. Design/methodology/approach This study involved laboratory tests of clothing protecting against cold and textile systems used in this type of garment using a “skin model” test stand and a thermal manikin. Findings Analysis of the results obtained from tests carried out showed that the design solutions used in a garment can model its local and overall insulation. It was found that using a bib in trousers has a dominant influence on the thermal properties of clothing. An important parameter is also the use of a hood, as well as the length of the jacket. No significant effect of other structural solutions, such as jacket fastening, pockets and reflective tapes, on the thermal performance of the clothing set was noted. Originality/value Although the reports available in the literature pay a lot of attention to the impact of the design of clothing protecting against cold on its thermal performance, most of the presented research results relate to the aspects of fit, whereas the analyses of the effects of other aspects of garment construction on thermal properties are lacking. Therefore, the analysis of the impact of design solutions used in clothing on its thermal insulation properties is a key original factor of this paper.


2015 ◽  
Vol 27 (4) ◽  
pp. 587-599 ◽  
Author(s):  
Youngjoo Na ◽  
Jisu Kim

Purpose – Empire style fashion, Greek-Roman style robe with bare shoulder and chest and short sleeved with long gloves which created a slim silhouette, was worn even in winter season in Europe, where average temperature is 0-5°C. Most women suffered with catching cold and thousands caught flu and tuberculosis of the lungs, called muslin disease. The purpose of this paper is to find out clothing insulation of the robe by measuring the thermal resistance and to guess how cold they felt in this robe in winter time. Design/methodology/approach – The authors performed the investigation on original robe shape with based on historical evidence and data, such as drawings, sketches, pattern books and sewing books, and reproduced a representative robe costume and tested its thermal insulation. The fabrics of robe were thin wool, silk and cotton following the literature evidence and preserved costume. Thermal insulation of the robes was measured using thermal manikin with the test method ISO 15831. The authors analyzed the thermal insulation of reconstructed robes with an inner cotton breech as for daily use and tested them wrapped with cashmere shawl on manikin shoulder as for severe cold weather. Findings – The dress robes had the range of 0.61-0.67 clo regardless of the type of fabric materials, and 0.80-0.81 clo with the cashmere shawl. These values were not enough for women to keep body temperature or comfort in winter time. Originality/value – This study combined fashion historic theory for costume reproduction with clothing science and technology for thermal insulation. Combination of costume history, construction technology and measurement engineering is the ingenious idea, and the combination of historical and scientific research evidences interdisciplinary originality.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Željko Knezić ◽  
Željko Penava ◽  
Diana Šimić Penava ◽  
Dubravko Rogale

Electrically conductive yarns (ECYs) are gaining increasing applications in woven textile materials, especially in woven sensors suitable for incorporation into clothing. In this paper, the effect of the yarn count of ECYs woven into fabric on values of electrical resistance is analyzed. We also observe how the direction of action of elongation force, considering the position of the woven ECY, effects the change in the electrical resistance of the electrically conductive fabric. The measurements were performed on nine different samples of fabric in a plain weave, into which were woven ECYs with three different yarn counts and three different directions. Relationship curves between values of elongation forces and elongation to break, as well as relationship curves between values of electrical resistance of fabrics with ECYs and elongation, were experimentally obtained. An analytical mathematical model was also established, and analysis was conducted, which determined the models of function of connection between force and elongation, and between electrical resistance and elongation. The connection between the measurement results and the mathematical model was confirmed. The connection between the mathematical model and the experimental results enables the design of ECY properties in woven materials, especially textile force and elongation sensors.


2021 ◽  
Vol 904 ◽  
pp. 441-446
Author(s):  
Nuchnapa Tangboriboon ◽  
Sarun Muntongkaw ◽  
Sompratthana Pianklang

Adding 0, 20, and 50 wt% natural-rubber latex compound into the plaster ceiling matrix affected to increase the physical-mechanical-thermal performance properties of plaster ceiling composites. Adding 50 wt% natural rubber latex compound into plaster composites can increase the superior adhesion of the nail-tensile resistance equal to 57.54 N and decrease thermal conductivity equal to 0.0634 W/m.K. In addition, adding natural rubber latex compounds into plaster composites can reduce water solubility, brittleness, impact, and cost of energy consumption due to the exterior temperature. Adequate thermal insulation for roofing, ceiling, and wall systems also reduces radiative losses that chill occupants in cold weather, and reduce interior surface temperatures in the summer, thereby optimizing the comfort of building occupants. The mechanical and thermal properties of plaster composites were investigated by using a Universal Testing Machine (UTM) and heat flow meter, respectively, measured according to TIS 1211-50, TIS 219-2522, and ASTM C518.


2017 ◽  
Vol 109 (5) ◽  
pp. 585-595 ◽  
Author(s):  
Eugene Lee ◽  
Sangji Han ◽  
Kyung-hyun Lee ◽  
Jeongmun Lee ◽  
Gilsoo Cho

Sign in / Sign up

Export Citation Format

Share Document