3D Virtual museum generation by using SuperSQL

2018 ◽  
Vol 14 (2) ◽  
pp. 124-146
Author(s):  
Kento Goto ◽  
Misato Kotani ◽  
Motomichi Toyama

Purpose Currently, the results of database acquisition are variously expressed, but it seems that users’ understanding degree will be improved by expressing some search results such as images of products of shopping sites in three dimensions rather than two dimensions. Therefore, this paper aims to propose a system for automatically generating 3D virtual museum that arranges 3D objects with various layouts from the acquisition result of relation database by SuperSQL query. Design/methodology/approach The study extended the SuperSQL to generate 3D virtual reality museum using declarative queries on relational data stored in a database. Findings This system made it possible to generate various three-dimensional virtual spaces with different layouts through simple queries. Originality/value It can be said that this system is useful in that a complicated three-dimensional virtual space can be generated by describing a simple query and a different three-dimensional virtual space can be generated by slightly changing the query or database content. When creating a virtual museum, if there are too many exhibitions or when changing the layout, the burden on the user will be high. But in this system, it is possible to automatically generate various virtual museums easily and reduce the burden on users.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Yixiang Bian ◽  
Can He ◽  
Kaixuan Sun ◽  
Longchao Dai ◽  
Hui Shen ◽  
...  

Purpose The purpose of this paper is to design and fabricate a three-dimensional (3D) bionic airflow sensing array made of two multi-electrode piezoelectric metal-core fibers (MPMFs), inspired by the structure of a cricket’s highly sensitive airflow receptor (consisting of two cerci). Design/methodology/approach A metal core was positioned at the center of an MPMF and surrounded by a hollow piezoceramic cylinder. Four thin metal films were spray-coated symmetrically on the surface of the fiber that could be used as two pairs of sensor electrodes. Findings In 3D space, four output signals of the two MPMFs arrays can form three “8”-shaped spheres. Similarly, the sensing signals for the same airflow are located on a spherical surface. Originality/value Two MPMF arrays are sufficient to detect the speed and direction of airflow in all three dimensions.


Author(s):  
Guy Bouchitté ◽  
Ornella Mattei ◽  
Graeme W. Milton ◽  
Pierre Seppecher

In many applications of structural engineering, the following question arises: given a set of forces f 1 ,  f 2 , …,  f N applied at prescribed points x 1 ,  x 2 , …,  x N , under what constraints on the forces does there exist a truss structure (or wire web) with all elements under tension that supports these forces? Here we provide answer to such a question for any configuration of the terminal points x 1 ,  x 2 , …,  x N in the two- and three-dimensional cases. Specifically, the existence of a web is guaranteed by a necessary and sufficient condition on the loading which corresponds to a finite dimensional linear programming problem. In two dimensions, we show that any such web can be replaced by one in which there are at most P elementary loops, where elementary means that the loop cannot be subdivided into subloops, and where P is the number of forces f 1 ,  f 2 , …,  f N applied at points strictly within the convex hull of x 1 ,  x 2 , …,  x N . In three dimensions, we show that, by slightly perturbing f 1 ,  f 2 , …,  f N , there exists a uniloadable web supporting this loading. Uniloadable means it supports this loading and all positive multiples of it, but not any other loading. Uniloadable webs provide a mechanism for channelling stress in desired ways.


2021 ◽  
Author(s):  
◽  
Sally Margaret Apthorp

<p>This thesis creatively explores the architectural implications present in the photographs by New Zealand photographer Marie Shannon. The result of this exploration is a house for Shannon. The focus is seven of Shannon's interior panoramas from 1985-1987 in which architectural space is presented as a domestic stage. In these photograph's furniture and objects are the props and Shannon is an actress. This performance, with Shannon both behind and in front of her camera, creates a double insight into her world; architecture as a stage to domestic life, and a photographers view of domestic architecture. Shannon's view on the world enables a greater understanding to our ordinary, domestic lives. Photography is a revealing process that teaches us to see more richly in terms of detail, shading, texture, light and shadow. Through an engagement with photographs and understanding architectural space through a photographer's eye, the hidden, secret or unnoticed aspects to Shannon's reality will be revealed. This insight into another's reality may in turn enable a deeper understanding of our own. The methodology was a revealing process that involved experimenting with Shannon's panoramic photographs. Models and drawing, through photographic techniques, lead to insights both formally in three dimensions and at surface level in two dimensions. These techniques and insights were applied to the site through the framework of a camera obscura. Shannon's new home is created by looking at her photographs with an architect's 'eye'. Externally the home acts as a closed vessel, a camera obscura. But internally rich and intriguing forms, surfaces, textures and shadings are created. Just as the camera obscura projects an exterior scene onto the interior, so does the home. Shannon will inhabit this projection of the shadows which oppose 30 O'Neill Street, Ponsonby, Auckland; her past home and site of her photographs. Photographers, and in particular Shannon, look at the architectural world with fresh eyes, free from an architectural tradition. Photography and the camera enable an improved power of sight. More is revealed to the camera. Beauty is seen in the ordinary, with detail, tone, texture, light and dark fully revealed. As a suspended moment, a deeper understanding and opportunity is created to observe and appreciate this beauty. Through designing with a photographer's eye greater insight is gained into Shannon's 'reality'. This 'revealing' process acts as a means of teaching us how to see pictorial beauty that is inherent in our ordinary lives. This is the beauty that is often hidden in secret, due to our unseeing eyes. This project converts the photographs beauty back into three dimensional architecture.</p>


2022 ◽  
Vol 275 (1349) ◽  
Author(s):  
Leonard Gross

The existence and uniqueness of solutions to the Yang-Mills heat equation is proven over R 3 \mathbb {R}^3 and over a bounded open convex set in R 3 \mathbb {R}^3 . The initial data is taken to lie in the Sobolev space of order one half, which is the critical Sobolev index for this equation over a three dimensional manifold. The existence is proven by solving first an augmented, strictly parabolic equation and then gauge transforming the solution to a solution of the Yang-Mills heat equation itself. The gauge functions needed to carry out this procedure lie in the critical gauge group of Sobolev regularity three halves, which is a complete topological group in a natural metric but is not a Hilbert Lie group. The nature of this group must be understood in order to carry out the reconstruction procedure. Solutions to the Yang-Mills heat equation are shown to be strong solutions modulo these gauge functions. Energy inequalities and Neumann domination inequalities are used to establish needed initial behavior properties of solutions to the augmented equation.


Kybernetes ◽  
2019 ◽  
Vol 48 (3) ◽  
pp. 362-384
Author(s):  
Wei-Lun Chang

PurposeThe purpose of this study is to explore the relationship between self-consciousness and physical attractiveness from a psychological perspective, examining the relationship of physical attractiveness with the three dimensions of self-consciousness.Design/methodology/approachThe research involved investigating the relationship between self-consciousness and physical attractiveness, focusing on how the three self-consciousness dimensions (i.e., private self-consciousness, public self-consciousness and social anxiety) affected physical attractiveness. Clustering techniques using self-organizing maps of data mining and decision trees were used in this study. The primal concept of clustering entails grouping unsorted and disorganized raw data and arranging data with similar properties into clusters. Classification primarily involves establishing classification models according to the category attributes of existing data. These models can be used to predict the classes of new data and determine interdata relationships and data characteristics.FindingsPublic self-consciousness was most strongly related to physical attractiveness, whereas the other two dimensions exhibited no obvious relationship to physical attractiveness. It may be concluded that people with higher physical attractiveness draw attention from others more easily and are more likely to be evaluated positively, and that they thus tend to be more confident in front of others and less likely to care about the opinions of others. Alternatively, perhaps people with lower public self-consciousness care less about how others view them and have the courage to express themselves, which signifies confidence and increases their physical attractiveness.Practical implicationsThis research investigated the importance of self-consciousness that may apply to recruitment in practice. People with low public self-consciousness may have high confidence and efficiency. People have low social anxiety may not be nervous or anxious in public and easy to speak to strangers. This kind of employees are appropriate for the jobs involving team work and interaction such as public relations. Hence, companies can apply our findings to search appropriate employees except the first impression of appearance.Originality/valueThe results revealed that high physical attractiveness is related to low public self-consciousness, whereas low physical attractiveness is related to high public self-consciousness. Good-looking people tend to attract attention from others. The relationship between private self-consciousness and physical attractiveness is non-significant. The relationship between social anxiety and physical attractiveness is non-significant.


Author(s):  
David Blow

In Chapter 4 many two-dimensional examples were shown, in which a diffraction pattern represents the Fourier transform of the scattering object. When a diffracting object is three-dimensional, a new effect arises. In diffraction by a repetitive object, rays are scattered in many directions. Each unit of the lattice scatters, but a diffracted beam arises only if the scattered rays from each unit are all in phase. Otherwise the scattering from one unit is cancelled out by another. In two dimensions, there is always a direction where the scattered rays are in phase for any order of diffraction (just as shown for a one-dimensional scatterer in Fig. 4.1). In three dimensions, it is only possible for all the points of a lattice to scatter in phase if the crystal is correctly oriented in the incident beam. The amplitudes and phases of all the scattered beams from a three-dimensional crystal still provide the Fourier transform of the three-dimensional structure. But when a crystal is at a particular angular orientation to the X-ray beam, the scattering of a monochromatic beam provides only a tiny sample of the total Fourier transform of its structure. In the next section, we are going to find what is needed to allow a diffracted beam to be generated. We shall follow a treatment invented by Lawrence Bragg in 1913. Max von Laue, who discovered X-ray diffraction in 1912, used a different scheme of analysis; and Paul Ewald introduced a new way of looking at it in 1921. These three methods are referred to as the Laue equations, Bragg’s law and the Ewald construction, and they give identical results. All three are described in many crystallographic text books. Bragg’s method is straightforward, understandable, and suffices for present needs. I had heard J.J. Thomson lecture about…X-rays as very short pulses of radiation. I worked out that such pulses…should be reflected at any angle of incidence by the sheets of atoms in the crystal as if these sheets were mirrors.…It remained to explain why certain of the atomic mirrors in the zinc blende [ZnS] crystal reflected more powerfully than others.


Author(s):  
Bernard Richards

In his 1952 paper ‘The chemical basis of morphogenesis’ Turing postulated his now famous Morphogenesis Equation. He claimed that his theory would explain why plants and animals took the shapes they did. When I joined him, Turing suggested that I might solve his equation in three dimensions, a new problem. After many manipulations using rather sophisticated mathematics and one of the first factory-produced computers in the UK, I derived a series of solutions to Turing’s equation. I showed that these solutions explained the shapes of specimens of the marine creatures known as Radiolaria, and that they corresponded very closely to the actual spiny shapes of real radiolarians. My work provided further evidence for Turing’s theory of morphogenesis, and in particular for his belief that the external shapes exhibited by Radiolaria can be explained by his reaction–diffusion mechanism. While working in the Computing Machine Laboratory at the University of Manchester in the early 1950s, Alan Turing reignited the interests he had had in both botany and biology from his early youth. During his school-days he was more interested in the structure of the flowers on the school sports field than in the games played there (see Fig. 1.3). It is known that during the Second World War he discussed the problem of phyllotaxis (the arrangement of leaves and florets in plants), and then at Manchester he had some conversations with Claude Wardlaw, the Professor of Botany in the University. Turing was keen to take forward the work that D’Arcy Thompson had published in On Growth and Form in 1917. In his now-famous paper of 1952 Turing solved his own ‘Equation of Morphogenesis’ in two dimensions, and demonstrated a solution that could explain the ‘dappling’—the black-and-white patterns—on cows. The next step was for me to solve Turing’s equation in three dimensions. The two-dimensional case concerns only surface features of organisms, such as dappling, spots, and stripes, whereas the three-dimensional version concerns the overall shape of an organism. In 1953 I joined Turing as a research student in the University of Manchester, and he set me the task of solving his equation in three dimensions. A remarkable journey of collaboration began. Turing chatted to me in a very friendly fashion.


2019 ◽  
Vol 26 (6) ◽  
pp. 631-647 ◽  
Author(s):  
Dag Håkon Haneberg

Purpose The purpose of this paper is to address how entrepreneurial learning may be understood as an effectual process in the early phase of venture creation. Design/methodology/approach Previous research is used to develop a conceptual frame of reference, which is further developed through a longitudinal qualitative case study of five new venture teams. Conceptualising these teams’ learning as sequences of events over a one-year period provides rich insight from real-life processes. Findings A conceptual model of how entrepreneurial learning may be understood as an effectual process is presented. The interactions and interdependencies between nine process characteristics along three main dimensions in the process, activity, multiple actors and context-dependent, demonstrate how the process tie together as a whole. Research limitations/implications The present paper argues for further cross-fertilisation of entrepreneurial learning and effectuation research and showcases how studies of entrepreneurial learning may contribute to organisational learning in entrepreneurial ventures. The conceptualisation of characteristics and dimensions aims to support future process studies by suggesting a framework for analysing process events in longitudinal studies. Originality/value Previous research has already established how activities are central to entrepreneurial learning and emphasised that what constitutes the two dimensions of multiple actors and context-dependence is important. The present paper contributes to entrepreneurial learning with an enhanced understanding of why and how the three dimensions are important as well as interdependent and mutually interactive. The present paper also contributes to organisational learning by extending the understanding of learning in emerging entrepreneurial organisations.


Sign in / Sign up

Export Citation Format

Share Document