Surface texture processing for tribological performance improvement of UHMWPE-based water-lubricated bearings

2018 ◽  
Vol 70 (7) ◽  
pp. 1341-1349 ◽  
Author(s):  
Zumin Wu ◽  
Chenxing Sheng ◽  
Zhiwei Guo ◽  
Yifei Li ◽  
Reza Malekian ◽  
...  

Purpose Water-lubricated bearings can significantly reduce the pollution to environment because the traditional oil lubricant is replaced by water in the bearings. The ultrahigh molecular weight polyethylene (UHMWPE) has proven to be effective and reliable for the manufacturing of water-lubricated bearings. However, limited work has been done to address the improvement of the tribological performance of the UHMWPE-based water-lubricated bearings using surface texture processing. This paper aims to investigate the effects of bar-grooved surface on the tribological performance improvement of UHMWPE-based water-lubricated bearings. Design/methodology/approach For the first time, the bar grooves were processed on the surfaces of UHMWPE-based water-lubricated bearings. The CBZ-1 friction and wear tester have been used to test the wear and friction performance of the bearing samples. The LI laser interference surface contour graph and the digital microscope have been used to measure the surface morphology of the specimens. The tribological characteristics of the tested bearings were analyzed. Findings With bar grooves added on the surfaces of the specimens, the friction coefficient of the specimens were lower than that of the specimens without surface texture processing; the wear quantity of the two kinds of specimens were almost the same; by using the LI laser interference surface contour graph and the digital microscope to measure the surface morphology of the specimens, the furrows of the specimens with bar grooves were narrower and shallower than that of the specimens without bar grooves. Practical implications The paper implicates that the surface texture processing using bar grooves can reduce the friction coefficient and prolong the service life of the water-lubricated bearings in practical applications. Originality/value This paper fulfills an identified need to provide important theoretical and experimental support to the design of water-lubricated bearings in practical applications.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jinlong Shen ◽  
Tong Zhang ◽  
Jimin Xu ◽  
Xiaojun LIU ◽  
Kun Liu

Purpose This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the outer surface of the inner ring. The influence of roughness parameters of a textured surface on reducing friction coefficient and temperature rise was also explored. Design/methodology/approach This study adopts a laser processing method to fabricate dimple-type textures. Three-dimensional roughness parameters were used to characterize the textured surfaces. The friction coefficients of five SPBs with surface texture and one original commercially available SPB without surface texture under different nominal loads were measured on a self-established test rig. The data of temperature rise were obtained by nine embedded thermal couples. Findings The results indicate that SPBs with textures generally exhibit lower friction coefficients than the original SPB without textures. The dimple depth has a significant influence on improving the tribological performance, which coincides with the analysis by surface roughness parameters. A textured surface with negative Ssk and high Vvc has the minimum temperature rise. Originality/value As it is too difficult to arrange sensors into heavy-load SPBs, there are few reports about the temperature characteristics. Through nine embedded thermal couples, the distribution of temperature rise on the inner ring of SPBs was given in this study. The positive effect of surface texture on reducing temperature rise and friction coefficient was verified, which is beneficial for the design of heavy-load SPBs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose This paper aims to investigate the tribological performance, i.e. abrasion resistance, friction coefficient and wear rates, of self-lubricated water conditioned polyamide6/boric oxide composites. Design/methodology/approach Polyamide6 and polyamide6/boric oxide self-lubricated composites were immersed in water for 15 days to analyze the effect of water conditioning on friction, wear and abrasion resistance. Tribological testing on pin-on-disc tribometer and abrasion resistance testing on TABER abrader were performed to see the friction coefficient and wear rates of materials. The scanning electron microscopy (SEM) characterizations were performed to analyze the wear tracks. Findings Tribological testing results revealed the loss in abrasive resistance, but there was an improvement in frictional coefficient and wear rates with steel after water absorption. The SEM images clearly show less depth of wear tracks in water-conditioned materials than dry ones. Water conditioning was found supportive in the formation of smooth lubricating transfer film on steel disc during the tribological testing. Originality/value The tribological behaviour of polymer composites is different in dry and in high humidity or water conditions. Experiments were performed to investigate B2O3 solid lubricant filler effectiveness on tribological behaviour of water-conditioned polyamide composites. Bonding between polyamide6 and water molecules plus the formation of orthoboric acid was found advantageous in decreasing the friction coefficient and wear rates of composites.


2019 ◽  
Vol 72 (5) ◽  
pp. 599-609
Author(s):  
Nilesh D. Hingawe ◽  
Skylab P. Bhore

Purpose The purpose of this study is to improve the tribological performance of meso scale air journal bearing by adopting texture on the bearing surface. Design/methodology/approach The present study is based on numerical analysis. The detailed numerical investigation is carried out using a fluid flow based thin-film model in COMSOL 5.2 software. Findings The influence of texture design parameters: geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing is investigated. It is found that texture shape has a strong influence on the tribological characteristics such as load capacity and friction coefficient of the bearing. Slender texture improves the load capacity, but it has a negligible effect on the reduction of friction coefficient. In contrast, texture orientation is found to be insignificant for both increasing load capacity and decreasing friction coefficient. Furthermore, the maximum improvement in load capacity is obtained for partially textured bearing, but the minimum friction coefficient is achieved for full texturing. Originality/value The present study investigates the influence of texture design parameters viz geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing.


2017 ◽  
Vol 69 (5) ◽  
pp. 701-707
Author(s):  
Seyed Husein Hasani Najafabadi ◽  
Ali Akbar Lotfi Neyestanak ◽  
Saeed Daneshmand

Purpose The purpose of equal channel angular pressing (ECAP) is producing ultra-fine grain materials. In practical applications, it is important to understand and predict effect of different process parameters on deformed parts. One of the most important process parameters is friction coefficient. Behavior evaluation of different lubricants in the ECAP process is the aim of this research. Design/methodology/approach The present study concerns the experimental measurements of the effective strain by means of gridded parts for three different lubricants, graphite, molybdenum disulfide and zinc stearate, to evaluate friction coefficient in ECAP process. Mesh size was 2 × 2 mm2 and embedded in parts made of AL2024; process was done in ambient temperature, and parts were in annealed situation. After the process, strain measured by optical and analytical methods for evaluation of lubricants’ behavior with different friction coefficients. Findings This study shows that zinc stearate has better effects rather than other lubricants in ECAP process and ECAPed parts. Originality/value The fatal challenge for researchers and industrial applications of ECAP process is lubrication. This research is a guide for scientists and engineers (in the future applications) to reduce and control bad frictional effects, produce better parts (more strain homogenous parts), prevent die failures and decrease press tonnage in ECAP process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sıtkı Akincioğlu ◽  
Şenol Şirin

Purpose The purpose of this study is to investigate the effect of new green hexagonal boron nitride (hBN) nanofluid on AISI 316L stainless friction coefficient, wear resistance and wear using a ball on disc tester. Design/methodology/approach Nanofluids were prepared by adding hBN nanoparticles with two-step method to the vegetable-based oil at 0.50 vol%. Before the experiments, hBN nanofluid viscosity, pH and thermal conductivity specifications were determined. Friction tests of AISI 316L stainless steel were performed under 2 N, 5 N and 8 N loads at 400 rpm using a ball-on-disc test device under dry, oil and hBN conditions. Coefficient of friction, wear profile, surface integrity and wear mechanisms were chosen as performance criteria. Findings The friction coefficient values obtained under the oil and hBN test conditions with the 8 N load were, respectively, 72.46% and 77.64% lower than those obtained under dry test conditions. hBN nanofluid performed better on surface topography, and especially wear, compared to the dry and oil test conditions. Practical implications The aim of this study was to determine the best tribological performance of the hBN nanofluid on AISI 316L stainless steel used in orthopedic applications. Originality/value The paper is a study investigating the effect of hBN nanoparticle additive in vegetable-based oil on friction and wear performance of AISI 316L stainless steel. It is an original paper and is not published elsewhere.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bifeng Yin ◽  
Xuefeng Wang ◽  
Bo Xu ◽  
Gongyin Huang ◽  
Xin Kuang

Purpose The purpose of this paper was to improve the frictional wear resistance properties of piston skirts caused by the low viscosity lubricant by studying the tribological performance of three novel coating materials. Design/methodology/approach Comparative tribological examinations were performed in a tribological tester using the ring-block arrangement under two viscosity lubricants, the loading force was applied as 100 N, the speed was set to 60 r/min and the testing time was 180 min. Findings Under low viscosity lubricant, the friction coefficient and wear of the three coatings all increase, and the friction coefficient and wear of the PTFE coating are the largest, while the MoS2 coating has the lowest friction coefficient and wear. Under low viscosity lubricant, the friction coefficient of the MoS2 coating is 2.1%–5.4% and 20.0%–24.3% lower than that of the SiO2 and PTFE coating, respectively. The friction coefficient and wear fluctuation rate of the MoS2 coating is the smallest when the lubricant viscosity decreases, which indicates that the MoS2 coating has excellent stability and adaptability under low viscosity lubricant. Originality/value To reduce the piston skirt wear caused by low viscosity lubricant in heavy-duty diesel engines, the friction and wear adaptability of three novel composite coating materials for piston skirts were compared under 0 W-20 low viscosity lubricant, which could provide a guidance for the application of wear-resistant materials for heavy-duty diesel engine piston skirt.


2019 ◽  
Vol 71 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Chao Chen ◽  
Xiaojing Wang ◽  
Yifan Shen ◽  
Zhaolun Li ◽  
Jian Dong

PurposeSurface texturing has emerged in the past two decades as a viable option of surface engineering, resulting in significant improvement in wear resistance and friction coefficient. The purpose of this study is to find the appropriate surface texture to reduce vibration and improve the stability of journal bearings.Design/methodology/approachMicro-dimples, evenly distributed in a square array, were selected as the texture pattern and formed on the lower surface of bush by the laser surface texturing technique. Experiments were carried out to evaluate the effects of micro-dimples under different depths, densities and distributions.FindingsThe results are summarized in the form of shaft center orbits, waterfall illustrations and Hilbert-Huang transforms. In the entire test, it was found that an optimum geometric and distributive range of micro-dimples exists, where vibration acceleration can be decreased at least 3dB and stability can be greatly improved.Originality/valueA majority of researchers devoted to studying on static characteristics, such as friction coefficient, load carrying capacity, pressure distribution and cavitation model. Besides, the influence of surface texture on stability of rotor-journal bearing system was rarely investigated and the recent examples can be found in Refs. (Ausas et al. 2007). However, a complete study of textured journal bearings has not been undertaken in the dynamic properties. Therefore, the purpose of this paper is to experimentally investigate the comprehensive effects of density, depth and distribution of micro-dimples on bearing vibration and stability.


2018 ◽  
Vol 70 (7) ◽  
pp. 1350-1359 ◽  
Author(s):  
Minghua Pang ◽  
Xiaojun Liu ◽  
Kun Liu

Purpose This study aims to clarify the influence mechanism of surface texture (arrays of circular/square and concave/convex) on the frictional properties of WC-TiC/Co cemented carbide under a water-miscible cutting fluid (JAEGER SW-105, 5 per cent) environment. Design/methodology/approach Four types of textured cemented carbide surfaces (arrays of circular/square and concave/convex that have different textured densities and sizes) were fabricated using laser surface technology. Pin-on-disc tests between an AISI 304 stainless steel ball and WC-TiC/Co cemented carbide samples were carried out for a variety of normal loads (1, 3 and 5 N) under a water-miscible cutting fluid environment. The effects of textured type, density and size on the friction coefficient were obtained. Findings Compared to a smooth surface, some textured samples successfully resulted in a reduced friction coefficient. The friction coefficient of textured WC-TiC/Co cemented carbide samples depended greatly on the textured type, density and size. Given the increase in textured density (ranging from 10 to 30 per cent), the friction coefficient of the test samples first decreased and then increased for all normal loads (1, 3 and 5 N), and the minimum friction coefficient was obtained at the textured density of 20 per cent. The concave textured surface showed obvious advantages in friction coefficient reduction regardless of textured density, size and normal load compared with the convex textured surface. Finally, the correlation between textured diameter/length and Hertzian contact width was studied for various normal loads and texture sizes. A 2.6 ratio of textured diameter/length to Hertzian contact width is recommended under for lubricated sliding contact with the water-miscible cutting fluid. Originality/value The main contribution of this work is in providing a design reference and obtaining an essential understanding on the effect of surface texture (arrays of circular/square and concave/convex) on the friction of WC-TiC/Co cemented carbide under a water-miscible cutting fluid environment.


2019 ◽  
Vol 72 (3) ◽  
pp. 427-431
Author(s):  
Ke Li ◽  
Xiuping Dong ◽  
Mingji Huang ◽  
Ping Chen

Purpose This paper aims to improve the wear resistance of metal rubber microfilaments and the service life. The effect of surface texture by laser processing on the fretting friction properties of metal rubber microfilaments was studied. Design/methodology/approach The LQL-F20A laser marking machine was used to fabricate a ring groove array with equal spacing and dense arrangement on the surface of metal rubber microfilaments. The test was carried out with a self-made micro-dynamic frictional tester. The topography of the microfilaments was observed by scanning electron microscopy and analyzed. Findings It has shown that laser surface texturing can improve the wear performance of microfilaments. Under the same experimental conditions, the microfilaments of textured surface has a smaller depth of wear than un-textured specimen. The wear resistance increases with the increase of texture density. The friction coefficient of textured specimen is significantly reduced compared with un-textured specimen, and the surface texture density of microfilaments has little influence on the friction coefficient after stabilization. In the stage of stable fretting wear, the wear depth will be more with the increase of the load. Originality/value There is little research on metal rubber microfilaments tribological properties. In this paper, the effect of laser texturing of microfilaments on micro-dynamic friction properties was studied by friction machine to provide a reference for the application of metal rubber in aerospace, medical and other fields.


2020 ◽  
Vol 72 (7) ◽  
pp. 977-983
Author(s):  
Jiale Lu ◽  
Baofeng Pan ◽  
Tiankai Che ◽  
Dong Sha

Purpose This study aims to investigate the influence of surface texture distribution in respect to the procedure of pavement surface wear on friction performance. Design/methodology/approach The Weierstrass–Mandelbrot (W-M) equation is used to appropriate pavement surface profile. Through this approximation, artificial rough profiles by combining fractal parameters and conventional statistical parameters for different macro-texture are created to simulate the procedure of pavement surface wear. Those artificial profiles are then imported into discrete element model to calculate the interaction forces and friction coefficient between rolling tire and road. Furthermore, wavelet theory is used to decompose the profiles into different scales and explore the correlation between the profiles of each scale and pavement friction. Findings The influence of tire vertical displacement (TVD) on friction coefficient is greater than fractal dimension of road surface texture. When TVD decreases, the profiles can provide higher friction, but the rolling stability of tire is poor. The optimal fractal dimension of road surface is about 1.5 when considering friction performance. The pavement friction performance improves with wavelength from 0.4 to 6.4mm and decreases with wavelength from 12.8 to 51.2mm. Originality/value Artificial fractal curves are generated and analyzed by combining W-M function with traditional parameter, which can also be used to analyze the influence of texture distribution on other pavement performance. The preliminary research provides a potential approach for the evaluation of pavement friction performance. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0499/


Sign in / Sign up

Export Citation Format

Share Document