Study on the influence of round pits arrangement patterns on tribological properties of journal bearings

2019 ◽  
Vol 71 (7) ◽  
pp. 931-941 ◽  
Author(s):  
Yazhou Mao ◽  
Yang Jianxi ◽  
Xu Wenjing ◽  
Liu Yonggang

Purpose The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors of journal bearing with different arrangement patterns under lubrication condition were studied based on M-2000 friction and wear tester. Design/methodology/approach The friction and wear of journal bearing contact surface were simulated by ANSYS. The wear mechanism of bearing contact surfaces was investigated by the means of energy dispersive spectrum analysis on the surface morphology and friction and wear status of the journal bearing specimens by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Besides, the wearing capacity of the textured bearing was predicted by using the GM (1,1) and Grey–Markov model. Findings As the loads increase, the friction coefficient of journal bearing specimens decrease first and then increase slowly. The higher rotation speed, the lower friction coefficient and the faster temperature build-up. The main friction method of the bearing sample is three-body friction. The existence of texture can effectively reduce friction and wear. In many arrangement patterns, the best is 4# bearing with round pits cross-arrangement pattern. Its texturing diameters are 60 µm and 125 µm, and the spacing and depth are 200 µm and 25 µm, respectively. In addition, the Grey–Markov model prediction result is more accurate and fit the experimental value better. Originality/value The friction and wear mechanism is helpful for scientific research and engineers to understand the tribological behaviors and engineering applications of textured bearing. The wear capacity of textured bearing is predicted by using the Grey–Markov model, which provides technical help and theoretical guidance for the service life and reliability of textured bearing.

2018 ◽  
Vol 70 (9) ◽  
pp. 1699-1705
Author(s):  
Dong Qiang Gao ◽  
Rui Wang ◽  
Wei Chen

Purpose The effect of the load on the tribological properties of Si3N4-hBN sliding against Si3N4 were investigated under dry and water lubrication condition. Design/methodology/approach Using a MMU-5G type pin-on-disc friction and wear tester. Findings Under the dry friction, the wear mechanism was dominated by ploughing and abrasive wear, and the contact status was elastic contact under the load less than 25 N. With the increase of the load, the friction coefficient decreased; the main wear mechanism was fatigue fracture, and the contact status turned into plastic contact. Under water lubrication, effective lubrication film could be produced on the worn surface, and it had a function of fluid lubrication under the load less than 15 N. With the increase of the load, the pin and the disc came into direct contact, and the friction and wear of the pairs were aggravated; the wear mechanism changed from chemical wear into abrasive wear and brittle spalling. Originality/value The study on the effect of the load on the tribological properties of Si3N4-hBN sliding against Si3N4 was investigated under dry and water lubrication condition in the way of contact stress.


2015 ◽  
Vol 67 (5) ◽  
pp. 418-424 ◽  
Author(s):  
Yuncai Zhao ◽  
Fei Yang ◽  
Yongming Guo

Purpose – The purpose of this paper is to investigate the effects of parallel texturing coating on antifriction mechanism of lubricating wear-resistant coating. Design/methodology/approach – A KF301/WS2 lubricating wear-resisting coating was prepared on matrix material GCr15 by applying supersonic plasma spraying technology. On the basis of this sample, the KF301/WS2 modified coating with parallel pit-type texture was prepared by laser re-melting technology and a surface texturing technique. Their friction and wear behaviors were evaluated under ambient temperature, and the antifriction mechanism of two kinds of coatings were discussed. Findings – Results showed that parallel texture has a certain impact on the tribological properties of the coating. When friction and wear reach stable state, the value of the friction coefficient of conventional coating was 0.115, while that of parallel texturing coating was 0.09, the latter decreased by 21 per cent. When the friction and wear time was up to 4 hours, the wear loss of the conventional coating was 0.29 mg, while that of the parallel texturing coating was 0.13 mg, the latter decreased by 55 per cent. Originality/value – The tribological properties of parallel texturing coating were higher than conventional coating. That is because the change of three-body layer reduces the friction coefficient and the abrasive particles were collected by parallel texture, reducing the effects of debris.


2021 ◽  
pp. 089270572110286
Author(s):  
Xinyue Zhang ◽  
Dekun Zhang ◽  
Kai Chen ◽  
Handong Xu ◽  
Cunao Feng

The complex movement of artificial joints is closely related to the wear mechanism of the prosthesis material, especially for the polymer prosthesis, which is sensitive to motion paths. In this paper, the “soft-soft” all-polymer of XLPE/PEEK are selected to study the influence of motion paths on the friction and wear performance. Based on the periodic characteristics of friction coefficient and wear morphology, this paper reveals the friction and wear mechanism of XLPE/peek under multi-directional motion path, and obtains the quantitative relationship between friction coefficient and the aspect ratios of “∞”-shape motion path, which is of great significance to reveal and analyze the wear mechanism of “soft” all-polymer under multi-directional motion path. The results show that the friction coefficient is affected by the motion paths and have periodicity. Morever, under the multi-directional motion paths, the wear of PEEK are mainly abrasive wear and adhesive wear due to the cross shear effect, while the wear of XLPE is mainly abrasive wear with plastic accumulation. In addition, the friction coefficient is greatly affected the aspect ratios Rs-l of “∞”-shape and loads. Meanwhile, the wear morphologies are greatly affected by the aspect ratios Rs-l of “∞”-shape, but less affected by loads.


2010 ◽  
Vol 654-656 ◽  
pp. 2763-2766 ◽  
Author(s):  
Li Wen Mu ◽  
Xin Feng ◽  
Yi Jun Shi ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological properties of polyimide (PI) composites reinforced with graphite or MoS2 sliding in liquid alkali and water as well as dry friction were investigated using a ring-on-ring tester. The results show that the friction coefficient (μ) and wear rate (W) for both graphite/PI and MoS2/PI composites in different liquid mediums are μdry>μwater >μalkali and Wwater>Wdry >Walkali. Results also indicate that the friction coefficient and wear rate of the PI composites filled with different solid lubricants are μMoS2 >μgraphite and W MoS2 >Wgraphite in different liquid mediums. In addition, the hydrophobic inorganic fillers are fit for the reinforcement of polymer-based composites sliding in liquid mediums. It is also concluded from the authors’ work that the wear rate and friction coefficient of polymer-based (such as PI, PTFE) composites in the alkali lubricated conditions is lowest among all the friction conditions. This may be attributed to the ionic hydration in the alkaline solution.


2018 ◽  
Vol 70 (3) ◽  
pp. 560-567 ◽  
Author(s):  
Jian Feng Li ◽  
Qin Shi ◽  
HeJun Zhu ◽  
ChenYu Huang ◽  
Shuai Zhang ◽  
...  

Purpose This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to show that Cu-based electrical contact materials containing Nb0.91Ti0.09Se2 have better electrical and tribological properties than those containing NbSe2. The tribological properties of Cu-based with different Ti-dopped NbSe2 content were also discussed. Design/methodology/approach The NbSe2 and Nb0.91Ti0.09Se2 particles were fabricated by thermal solid state reaction method. The powder metallurgy technique was used to fabricate composites with varying Nb0.91Ti0.09Se2 mass fraction. The phase composition of Cu-based composites was identified by X-ray diffraction, and the morphology of NbSe2/Nb0.91Ti0.09Se2 and the worn surface of composites were characterized by scanning electron microscopy and transmission electron microscopy. In addition, the tribological properties of composites were appraised using a ball-on-disk multi-functional tribometer. The data of friction coefficient and resistivity were analyzed and the corresponding conclusion was drawn. Findings In comparison with the pure copper, Cu-based composites containing Nb0.91Ti0.09Se2/NbSe2 had a lower friction coefficient, illustrating the Nb0.91Ti0.09Se2 with nano-size particles prepared in this work is a perfect choice for the fabrication of excellent electrical contact composites. Compared to composites with NbSe2, composites containing Nb0.91Ti0.09Se2 have better tribological and electrical properties. Research limitations/implications Because of the use of thermal solid state reaction method, the size of NbSe2 and Nb0.91Ti0.09Se2 is relatively large. Therefore, the fabrication of finer particles of Nb0.91Ti0.09Se2 is encouraged. Originality/value In this paper, the authors discuss the tribological and electrical properties of Cu-based composites, and the value of optimum obtained as Nb0.91Ti0.09Se2 content is 15 Wt.%.


2017 ◽  
Vol 69 (5) ◽  
pp. 645-654 ◽  
Author(s):  
Juozas Padgurskas ◽  
Raimundas Rukuiža ◽  
Ihor Mandziuk ◽  
Arturas Kupcinskas ◽  
Katerina Prisyazhna ◽  
...  

Purpose The purpose of this paper is to report on the tribological properties of beef tallow grease and improvements therein through modification with special processing, polymeric compounds and additives. Design/methodology/approach Pure original beef tallow grease was used as a biological lubricating grease reference material for the tribological research. Beef tallow was modified and synthesized by adding special biological anti-oxidant additives, LZ anti-wear additives, waste polyethylene terephthalate (PET) polymer compounds and thermally processed graphite. Findings Rheometric measurements indicate that the beef tallow grease modification technology used in this study enables control of the synthesis process to produce lubricants with the required microstructure. Investigation results of the tribological properties of differently modified greases show that beef tallow synthesized with polymer additives efficiently operates together with anti-wear additives to reduce friction and wear. The grease compound with thermally processed graphite has good tribological properties at 300 N load levels. The critical load level of lubricating greases could be significantly increased through the use of anti-wear additives and thermally processed graphite. Originality/value Investigation results of the tribological properties of differently modified beef tallow greases show that beef tallow synthesized with polymer additives efficiently operates together with anti-wear additives to reduce friction and wear. The critical load level of lubricating beef tallow greases could be significantly increased using anti-wear additives and thermally processed graphite.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xincong Zhou ◽  
Chaozhen Yang ◽  
Jian Huang ◽  
Xueshen Liu ◽  
Da Zhong ◽  
...  

Purpose Ultra-high molecular weight polyethylene (UHMWPE) is adopted in water-lubricated bearings for its excellent performance. This paper aims to investigate the tribological properties of UHMWPE with a molecular weight of 10.2 million (g mol‐1) under different molding temperatures. Design/methodology/approach The UHMWPE samples were prepared by mold pressing under constant pressure and different molding temperatures (140°C, 160°C, 180°C, 200°C, 220°C). The friction and wear tests in water were conducted at the RTEC tribo-tester. Findings The friction coefficient and wear loss decreased first and rose later with the increasing molding temperature. The minimums of the friction coefficient and wear loss were found at the molding temperatures of 200°C. At low melting temperatures, the UHMWPE molecular chains could not unwrap thoroughly, leading to greater abrasive wear. On the other hand, high melting temperatures will cause the UHMWPE molecular chains to break up and decompose. The optimal molding temperatures for UHMWPE were found to be 200°C. Originality/value Findings are of great significance for the design of water-lubricated UHMWPE bearings.


2019 ◽  
Vol 72 (5) ◽  
pp. 599-609
Author(s):  
Nilesh D. Hingawe ◽  
Skylab P. Bhore

Purpose The purpose of this study is to improve the tribological performance of meso scale air journal bearing by adopting texture on the bearing surface. Design/methodology/approach The present study is based on numerical analysis. The detailed numerical investigation is carried out using a fluid flow based thin-film model in COMSOL 5.2 software. Findings The influence of texture design parameters: geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing is investigated. It is found that texture shape has a strong influence on the tribological characteristics such as load capacity and friction coefficient of the bearing. Slender texture improves the load capacity, but it has a negligible effect on the reduction of friction coefficient. In contrast, texture orientation is found to be insignificant for both increasing load capacity and decreasing friction coefficient. Furthermore, the maximum improvement in load capacity is obtained for partially textured bearing, but the minimum friction coefficient is achieved for full texturing. Originality/value The present study investigates the influence of texture design parameters viz geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1854
Author(s):  
Fei-xia Zhang ◽  
Yan-qiu Chu ◽  
Chang-sheng Li

This paper presents a facile and effective method for preparing Ni/NbSe2 composites in order to improve the wettability of NbSe2 and copper matrix, which is helpful in enhancing the friction-reducing and anti-wear properties of copper-based composites. The powder metallurgy (P/M) technique was used to fabricate copper-based composites with different weight fractions of Ni/NbSe2, and tribological properties of composites were evaluated by using a ball-on-disk friction-and-wear tester. Results indicated that tribological properties of copper-based composites were improved by the addition of Ni/NbSe2. In particular, copper-based composites containing 15 wt.% Ni/NbSe2 showed the lowest friction coefficient (0.16) and wear rate (4.1 × 10−5 mm3·N−1·m−1) among all composites.


Sign in / Sign up

Export Citation Format

Share Document