Effects of thermal radiation and electromagnetohydrodynamics on viscous nanofluid through a Riga plate

2016 ◽  
Vol 12 (4) ◽  
pp. 605-618 ◽  
Author(s):  
Muhammad Mubashir Bhatti ◽  
Tehseen Abbas ◽  
M.M. Rashidi

Purpose The purpose of this paper is to analyze theoretically the effects of thermal radiation with electrohydrodynamics through a Riga plate. An incompressible and irrotational fluid with constant density is taken into account. The governing flow problem is modeled with the help of linear momentum, thermal energy equation and nanoparticle concentration equation. Design/methodology/approach Numerical integration is used with the help of the shooting technique to examine the novel features of the velocity profile, temperature profile and nanoparticle concentration profile. The impact of all the emerging parameters is sketched with the help of graphs. The numerical values of local Nusselt number and Sherwood number are also presented. Findings The no-slip condition is considered for the present study. The effects of electromagnetohydrodynamics enhance the velocity profile while thermal radiation effects tend to raise the temperature profile. The present study depicts many interesting behaviors that warrant further study on Riga plates with different non-Newtonian fluid models. A comparison is also presented with the existing published results which confirms the validity of the presented methodology. Originality/value The results of this paper are new and original.

Author(s):  
Tehseen Abbas ◽  
Muhammad Mubashir Bhatti ◽  
Muhammad Ayub

In the present study, simultaneous effects of the chemical reaction and electromagnetohydrodynamic on the Casson nanofluid over porous Riga plate has been investigated. The governing flow problem consists of linear momentum, thermal energy, and nanoparticle concentration equation, which is modeled with the help of Oberbeck–Boussinesq approximation. Shooting method is employed to obtain the solution of the resulting nonlinear coupled ordinary differential equation. The behavior of the velocity profile, temperature profile, and nanoparticle concentration profile are discussed against modified Hartman number, porosity parameter, chemical reaction parameter, Prandtl number, Brownian motion parameter, thermophoresis parameter, Schmidt number, nanoparticle flux parameter, and Richardson number, respectively. The governing flow is also discussed for aiding and opposing flow by considering the negative and positive values of the modified Hartman number. The Nusselt number and Sherwood number are also computed numerically. Moreover, it is also found that the porosity parameter also enhances the velocity profile. A numerical comparison is also presented with previously published results to ensure the validity of the current methodology and results.


2022 ◽  
Vol 52 (1) ◽  
pp. 35-41
Author(s):  
Silpisikha Goswami ◽  
Kamalesh Kumar Pandit ◽  
Dipak Sarma

Our motive is to examine the impact of thermal radiation and suction or injection with viscous dissipation on an MHD boundary layer flow past a vertical porous stretched sheet immersed in a porous medium. The set of the flow equations is converted into a set of non-linear ordinary differential equations by using similarity transformation. We use Runge Kutta method and shooting technique in MATLAB Package to solve the set of equations. The impact of non-dimensional physical parameters on flow profiles is analysed and depicted in graphs. We observe the influence of non-dimensional physical quantities on the Nusselt number, the Sherwood number, and skin friction and presented in tables. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. We enhance radiation to observe the deceleration of fluid velocity and temperature profile for both suction and injection. While enhancing porosity parameter accelerates velocity whereas decelerates temperature profile. As the heat source parameter increases, the temperature of the fluid decreases for both suction and injection, it has been found. With the increasing values of the radiation parameter, the skin friction and heat transfer rate decreases. Increasing magnetic parameter decelerates the skin friction, Nusselt number, and Sherwood number.


2020 ◽  
Vol 16 (6) ◽  
pp. 1577-1594
Author(s):  
Kazeem Babawale Kasali ◽  
Yusuf Olatunji Tijani ◽  
Matthew Oluwafemi Lawal ◽  
Yussuff Titilope Lawal

PurposeIn this paper, we studied the steady flow of a radiative magnetohydrodynamics viscoelastic fluid over an exponentially stretching sheet. This present work incorporated the effects of Soret, Dufour, thermal radiation and chemical reaction.Design/methodology/approachAn appropriate semi-analytical technique called homotopy analysis method (HAM) was used to solve the resulting nonlinear dimensionless boundary value problem, and the method was validated numerically using a finite difference scheme implemented on Maple software.FindingsIt was observed that apart from excellence agreement with the results in literature, the results obtained gave further insights into the behaviour of the system.Originality/valueThe purpose of this research is to investigate heat and mass transfer profiles of a MHD viscoelastic fluid flow over an exponentially stretching sheet in the influence of chemical reaction, thermal radiation and cross-diffusion which are hitherto neglected in previous studies.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 207 ◽  
Author(s):  
Muhammad Jawad ◽  
Zahir Shah ◽  
Saeed Islam ◽  
Jihen Majdoubi ◽  
I. Tlili ◽  
...  

The aim of this article is to study time dependent rotating single-wall electrically conducting carbon nanotubes with aqueous suspensions under the influence of nonlinear thermal radiation in a permeable medium. The impact of viscous dissipation is taken into account. The basic governing equations, which are in the form of partial differential equations (PDEs), are transformed to a set of ordinary differential equations (ODEs) suitable for transformations. The homotopy analysis method (HAM) is applied for the solution. The effect of numerous parameters on the temperature and velocity fields is explanation by graphs. Furthermore, the action of significant parameters on the mass transportation and the rates of fiction factor are determined and discussed by plots in detail. The boundary layer thickness was reduced by a greater rotation rate parameter in our established simulations. Moreover, velocity and temperature profiles decreased with increases of the unsteadiness parameter. The action of radiation phenomena acts as a source of energy to the fluid system. For a greater rotation parameter value, the thickness of the thermal boundary layer decreases. The unsteadiness parameter rises with velocity and the temperature profile decreases. Higher value of augments the strength of frictional force within a liquid motion. For greater and ; the heat transfer rate rises. Temperature profile reduces by rising values of .


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Dhia Massoudi ◽  
Mohamed Bechir Ben Hamida ◽  
Mohammed A. Almeshaal ◽  
Yahya Ali Rothan ◽  
Khalil Hajlaoui

Purpose The purpose of this paper is to examine numerically the magnetohydrodynamic (MHD) free convection and thermal radiation heat transfer of single walled carbon nanotubes-water nanofluid within T-inverted shaped corrugated cavity comprising porous media including uniform heat source/sink for solar energy power plants applications. Design/methodology/approach The two-dimensional numerical simulation is performed by drawing on Comsol Multiphysics program, based on the finite element process. Findings The important results obtained show that increasing numbers of Rayleigh and Darcy and the parameter of radiation enhance the flow of convection heat. Furthermore, by increasing the corrugation height, the convection flow increases, but it decreases with the multiplication of the corrugation height. The use of a flat cavity provides better output than a corrugated cavity. Originality/value The role of surface corrugation parameters on the efficiency of free convection and heat transfer of thermal radiation within the porous media containing the T-inverted corrugated cavity including uniform heat source/sink under the impact of Lorentz forces has never been explored. A contrast is also established between a flat cavity and a corrugated one.


2019 ◽  
Vol 15 (4) ◽  
pp. 714-736 ◽  
Author(s):  
Sawan Kumar Rawat ◽  
Ashish Mishra ◽  
Manoj Kumar

Purpose The purpose of this paper is to explore the flow of Cu-water and Ag-water nanofluids past a vertical Riga plate. The plate is infinite in height and has zero normal wall flux through its surface. Influence of thermal radiation, slip, suction and chemical reaction on the flow characteristics are reported. Design/methodology/approach Non-dimensional forms of the flow governing equations are obtained by means of a set of similarity transformations. Numerical solution is obtained with the help of fourth-fifth-order Runge–Kutta–Fehlberg method with shooting procedure. Comparison of solution profiles of Cu-water and Ag-water nanofluids are presented graphically and with the help of tables. Influence of pertinent parameters on skin friction and heat transfer rate is also reported. Findings Results reveal that the skin friction coefficient is more prominent in the case of Ag-water nanofluid for an increase in thermal radiation and volume fraction. The role of suction and slip is to increase velocity but decrease the temperature in both nanofluids. Temperature and velocity of both nanofluids increase as volume fraction and thermal radiation values are augmented. Heat transport increases with thermal radiation. Region near the plate experiences rise in nanoparticle concentration with an increase in chemical reaction parameter. Originality/value A complete investigation of the modeled problem is addressed and the results of this paper are original.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Aaqib Majeed ◽  
Muhammad Zubair ◽  
Adnan Khan ◽  
Taseer Muhammad ◽  
M.S. Alqarni

In this article, MHD flow of silver/water nanofluid past a stretched cylinder under the impact of thermal radiation with chemical reaction and slip condition is studied. The impact of Soret and Dufour effect is also analyzed during this flow. The uniqueness of the given problem is enlarged with the insertion of variable magnetic field, free stream velocity, thermal slip condition, and nonlinear thermal radiation. The PDEs are converted to ODEs by using suitable similarity transformation. The nonlinear system of ODEs is solved by applying convergent homotopy analysis method (HAM). The velocity, temperature, and concentration profiles for the free stream and at the plate are discussed through graphs and numerical tables. It is found that velocity field reduces, while the temperature profile rises for the increasing values of magnetic parameter. It is examined that effects of curvature on frication factor are increasing. Furthermore, temperature profile increases for greater Brownian motion and thermophoresis parameters. Transfer of heat enhances decreasing the radius of the cylinder also with heat generation parameter. The skin friction can be reduced by enhancing free stream and wall stretching velocities ratio. Velocity profile of the flow can be controlled by enhancing velocity slip and magnetic field.


Author(s):  
S. Mohd Zokri ◽  
N. S. Arifin ◽  
A. R. Mohd Kasim ◽  
Mohd Zuki Salleh

A theoretical study is conducted to investigate the thermal radiation effect on boundary layer flow of magneto-hydrodynamic (MHD) Jeffrey nanofluid across a moving plate with convective boundary condition. More physically acceptable model of passively controlled wall nanoparticle concentration is executed. Similarity transformation variables are utilised to transform the partial differential equations to non-linear ordinary differential equations. An effective Runge-Kutta Fehlberg Fourth-Fifth order (RKF45) method is employed to solve the obtained equations numerically. Validation of the present results has been made with the existing studies under the limiting cases and the results are found to be in a good agreement. Numerical solutions for several pertinent parameters are provided graphically over specified distributions. The results indicate that the temperature profile intensifies attributable to the increasing thermal radiation parameter. Besides, the increase of Brownian motion parameter pronounces negligible effect on the temperature profile, whereas nanoparticle concentration profile declines. Moreover, increment in the thermophoresis diffusion parameter results in the escalation of the temperature and nanoparticle concentration profiles.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1048
Author(s):  
Syed Muhammad Ali Haider ◽  
Bagh Ali ◽  
Qiuwang Wang ◽  
Cunlu Zhao

In this paper, a mathematical model is established to examine the impacts of Stefan blowing on the unsteady magnetohydrodynamic (MHD) flow of an electrically conducting nanofluid over a stretching sheet in the existence of thermal radiation, Arrhenius activation energy and chemical reaction. It is proposed to use the Buongiorno nanofluid model to synchronize the effects of magnetic and electric fields on the velocity and temperature fields to enhance the thermal conductivity. We utilized suitable transformation to simplify the governing partial differential equation (PDEs) into a set of nonlinear ordinary differential equations (ODEs). The obtained equations were solved numerically with the help of the Runge–Kutta 4th order using the shooting technique in a MATLAB environment. The impact of the developing flow parameters on the flow characteristics is analyzed appropriately through graphs and tables. The velocity, temperature, and nanoparticle concentration profiles decrease for various values of involved parameters, such as hydrodynamic slip, thermal slip and solutal slip. The nanoparticle concentration profile declines in the manifestation of the chemical reaction rate, whereas a reverse demeanor is noted for the activation energy. The validation was conducted using earlier works published in the literature, and the results were found to be incredibly consistent.


Author(s):  
T. Hayat ◽  
Aneela Bibi ◽  
H. Yasmin ◽  
Fuad E. Alsaadi

This paper scrutinizes the impact of thermal radiation and applied magnetic field on Jeffrey fluid with peristalsis. The effects of Joule heating and viscous dissipation are retained. Convective conditions are imposed for the heat and mass transfer analysis. Lubrication approach is considered for the analysis. Expressions for pressure gradient, stream function, temperature, concentration, and heat transfer coefficient are developed and physically interpreted through illustrations. It is revealed that temperature enhances for higher estimation of Brinkman and Hartmann numbers, while it decays for larger Biot number. Furthermore, the concentration decreases for varying Schmidt number. Heat transfer coefficient has an oscillatory behavior for larger estimation of radiation parameter.


Sign in / Sign up

Export Citation Format

Share Document