Magnetic Field and Thermal Radiation Effects in Peristaltic Flow With Heat and Mass Convection

Author(s):  
T. Hayat ◽  
Aneela Bibi ◽  
H. Yasmin ◽  
Fuad E. Alsaadi

This paper scrutinizes the impact of thermal radiation and applied magnetic field on Jeffrey fluid with peristalsis. The effects of Joule heating and viscous dissipation are retained. Convective conditions are imposed for the heat and mass transfer analysis. Lubrication approach is considered for the analysis. Expressions for pressure gradient, stream function, temperature, concentration, and heat transfer coefficient are developed and physically interpreted through illustrations. It is revealed that temperature enhances for higher estimation of Brinkman and Hartmann numbers, while it decays for larger Biot number. Furthermore, the concentration decreases for varying Schmidt number. Heat transfer coefficient has an oscillatory behavior for larger estimation of radiation parameter.

Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


2015 ◽  
Vol 220-221 ◽  
pp. 760-764
Author(s):  
Marcin Janik ◽  
Tomasz Garstka ◽  
Aneta Krzyżańska ◽  
Marcin Knapiński ◽  
Anna Kawałek

Nowadays methods of hot-rolled sheets should ensure high mechanical and plastic properties of sheets, in-line rolling. Such technologies require application of devices for accelerated cooling of a band after last deformation. The essential thing in this process is selection of an appropriate positioning of the cooling intensity. The paper presents results of the cooling intensity for the selected air-water nozzle. On the basis of the results, the map of distribution of heat transfer coefficient for the nozzle to the surface of the cooling was performed. These tests were carried out for different settings of water and air. The research was carried out for high-strength steel. The obtained results allow executing of computer simulation of the impact of cooling intensity on the final product’s structure.


Author(s):  
Abdullatif A. Gari ◽  
Muhammad M. Rahman

When a magnetic field is applied to a magnetic material it releases energy. It has been proven experimentally that this temperature rise could be as high as 20 K when a magnetic field of 10 T is applied. Heat is generated when the magnetic field is applied and cooling is produced when the magnetic field is released. The purpose of this study is to explore transient heat transfer coefficient when a fluid is circulated in the substrate through microchannels. Equations for the conservation of mass, momentum, and energy were solved in the fluid region. In the solid region, the transient heat conduction equation was solved. Gadolinium and water were picked as the magnetic material and working fluid respectively. The results are represented by plotting the variations of heat transfer coefficient and Nusselt number with time at various sections of the tube. The effects of the magnetic field strength, diameter of the microtube in the substrate, and Reynolds number were studied. It was found that the heat transfer coefficient changes with time in a periodic fashion when heating and cooling are generated in the system by repeated introduction and relaxation of the magnetic field. The results of this study will be useful for the development of microtube heat exchangers for a compact magnetic refrigerator.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hadi Mahdizadeh ◽  
Nor Mariah Adam

Purpose This paper aims to investigate increasing heat transfer in bend tube 90° by fluid injection using nano fluid flow that was performed by expending varying Reynolds number. This paper studies the increased heat transfer in the bent tube that used some parameters to examine the effects of volume fraction, nanoparticle diameter, fluid injection, Reynolds number on heat transfer and flow in a bend pipe. Design/methodology/approach Designing curved tubes increases the thermal conductivity amount between fluid and wall. It is used the finite volume method and simple algorithms to solve the conservation equations of mass, momentum and energy. The results showed that the nanoparticles used in bent tube transfusion increase the heat transfer performance by increasing the volume fraction; it has a direct impact on enhancing the heat transfer coefficient. Findings Heat transfer coefficient enhanced 1.5% when volume fraction increased from 2 % to 6%, the. It is due to the impact of nanoparticles on the thermal conductivity of the fluid. The fluid is injected into the boundary layer flow due to jamming that enhances heat transfer. Curved lines used create a centrifugal force due to the bending and lack of development that increase the heat transfer. Originality/value This study has investigated the effect of injection of water into a 90° bend before and after the bend. Specific objectives are to analyze effect of injection on heat transfer of bend tube and pressure drop, evaluate best performance of mixing injection and bend in different positions and analyze effect of nano fluid volume fraction on injection.


1962 ◽  
Vol 84 (4) ◽  
pp. 301-311 ◽  
Author(s):  
M. Perlmutter ◽  
R. Siegel

An analysis is made to study the heat exchange by combined forced convection and thermal radiation in a tube when there is a specified heat flux imposed at the tube wall. The gas flowing in the tube is assumed transparent to radiation, so that the radiation which is included takes place between the elements of the internal tube surface and between this tube surface and the environment at each end of the tube. The inside surface of the tube is a black emitter and the outside is assumed perfectly insulated. The heat-transfer coefficient for convection alone from the tube wall to the gas is assumed constant. The energy equation governing the heat exchange is solved by two methods which provide results that are in good agreement with each other. Numerical examples of the wall and gas-temperature variations along the tube show the influence of the system parameters such as inlet gas temperature, tube length, and convective heat-transfer coefficient. A simple method is outlined, which can be used under some conditions to obtain an approximate wall-temperature distribution.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Mohamed M. A. Ibrahim ◽  
Mohamed R. Badawy

In this study, the thermal analysis for the impact of the cooling seawater site specific conditions on the thermal efficiency of a conceptual pressurized water reactor nuclear power plant (PWR NPP) is presented. The PWR NPP thermal performance depends upon the heat transfer analysis of steam surface condenser accounting for the key parameters such as the cooling seawater salinity and temperature that affect the condenser overall heat transfer coefficient and fouling factor. The study has two aspects: the first one is the impact of the temperature and salinity within a range of (290 K–310 K and 0.00–60000 ppm) on the seawater thermophysical properties such as density, specific heat, viscosity, and thermal conductivity that reflect a reduction in the condenser overall heat transfer coefficient from 2.25 kW/m2 K to 1.265 kW/m2 K at temperature and salinity of 290 K and 0.00 ppm and also from 2.35 kW/m2 K to 1.365 kW/m2 K at temperature and salinity of 310 K and 60000 ppm, whereas the second aspect is the fouling factor variations due to the seawater salinity. The analysis showed that the two aspects have a significant impact on the computation of the condenser overall heat transfer coefficient, whereas the increase of seawater salinity leads to a reduction in the condenser overall heat transfer coefficient.


2018 ◽  
Vol 249 ◽  
pp. 03009
Author(s):  
Hassan Khurshid ◽  
Karthik Silaipillayarputhur ◽  
Tawfiq Al Mughanam

This paper considers an analytical approach in the design of a passive heat sink for an ABB electrical drive. The heat sink is intended to dissipate a certain amount of heat energy and to maintain the surface temperature of an electronic communication board at the prescribed temperature. The maximum size of the heat sink is known due to the existing space constraint. This paper details the step by step procedure in the development of a passive heat sink that functions based on the natural convection. Two commonly used fins such as rectangular plate fins and rectangular pins fins were considered for the project. A parametric study was considered wherein a relationship was developed between the convection heat transfer coefficient and the air flow. Likewise, the impact of convection heat transfer coefficient was seen on the rate of heat transfer and the fin geometry.


Sign in / Sign up

Export Citation Format

Share Document