Williamson nanofluid flow through porous medium in the presence of melting heat transfer boundary condition: semi-analytical approach

2020 ◽  
Vol 17 (1) ◽  
pp. 19-33
Author(s):  
S.R. Mishra ◽  
Priya Mathur

PurposePresent investigation based on the flow of electrically conducting Williamson nanofluid embedded in a porous medium past a linearly horizontal stretching sheet. In addition to that, the combined effect of thermophoresis, Brownian motion, thermal radiation and chemical reaction is considered in both energy and solutal transfer equation, respectively.Design/methodology/approachWith suitable choice of nondimensional variables the governing equations for the velocity, temperature, species concentration fields, as well as rate shear stress at the plate, rate of heat and mass transfer are expressed in the nondimensional form. These transformed coupled nonlinear differential equations are solved semi-analytically using variation parameter method.FindingsThe behavior of characterizing parameters such as magnetic parameter, melting parameter, porous matrix, Brownian motion, thermophoretic parameter, radiation, Lewis number and chemical particular case present result validates with earlier established results and found to be in good agreement. Finally reaction parameter is demonstrated via graphs and numerical results are presented in tabular form.Originality/valueThe said work is an original work of the authors.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gladys Tharapatla ◽  
Pamula Rajakumari ◽  
Ramana G.V. Reddy

Purpose This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical approach. Design/methodology/approach The flow equations are set up with the non-linear free convective term, thermal radiation, nanofluids and Soret–Dufour effects. Thus, the non-linear partial differential equations of the flow analysis were simplified by using similarity transformation to obtain non-linear coupled equations. The set of simplified equations are solved by using the spectral homotopy analysis method (SHAM) and the spectral relaxation method (SRM). SHAM uses the approach of Chebyshev pseudospectral alongside the homotopy analysis. The SRM uses the concept of Gauss-Seidel techniques to the linear system of equations. Findings Findings revealed that a large value of the non-linear convective parameters for both temperature and concentration increases the velocity profile. A large value of the Williamson term is detected to elevate the velocity plot, whereas the Casson parameter degenerates the velocity profile. The thermal radiation was found to elevate both velocity and temperature as its value increases. The imposed magnetic field was found to slow down the fluid velocity by originating the Lorentz force. Originality/value The novelty of this paper is to explore the heat and mass transfer effects on MHD non-Newtonian fluids flow through an inclined thermally-stratified porous medium. The model is formulated in an inclined plate and embedded in a thermally-stratified porous medium which to the best of the knowledge has not been explored before in literature. Two elegance spectral numerical techniques have been used in solving the modeled equations. Both SRM and SHAM were found to be accurate.


2013 ◽  
Vol 8-9 ◽  
pp. 225-234
Author(s):  
Dalia Sabina Cimpean

The present study is focused on the mixed convection fluid flow through a porous medium, when a different amount of nanoparticles is added in the base fluid. The nanofluid saturates the porous matrix and different situations of the flow between two walls are presented and discussed. Alternatively mathematical models are presented and discussed. A solution of a system which contains the momentum, Darcy and energy equations, together with the boundary conditions involved, is given. The behavior of different nanofluids, such thatAu-water, Ag-waterandFe-wateris graphically illustrated and compared with the previous results.The research target is to observe the substantial increase of the thermophysical fluid properties, when the porous medium issaturated by a nanofluid instead of a classical Newtonian fluid.


2016 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Madhura K R ◽  
Uma M S

<p><span lang="EN-IN">The flow of an unsteady incompressible electrically conducting fluid with uniform distribution of dust particles in a constricted channel has been studied. The medium is assumed to be porous in nature. The governing equations of motion are treated analytically and the expressions are obtained by using variable separable and Laplace transform techniques. The influence of the dust particles on the velocity distributions of the fluid are investigated for various cases and the results are illustrated by varying parameters like Hartmann number, deposition thickness on the walls of the cylinder and the permeability of the porous medium on the velocity of dust and fluid phase.</span></p>


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


2018 ◽  
Vol 7 (4) ◽  
pp. 287-301
Author(s):  
Kourosh Parand ◽  
Yasaman Lotfi ◽  
Jamal Amani Rad

AbstractIn the present work, the problem of Hiemenz flow through a porous medium of a incompressible non-Newtonian Rivlin-Ericksen fluid with heat transfer is presented and newly developed analytic method, namely the homotopy analysis method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. This flow impinges normal to a plane wall with heat transfer. It has been attempted to show capabilities and wide-range applications of the homotopy analysis method in comparison with the numerical method in solving this problem. Also the convergence of the obtained HAM solution is discussed explicitly. Our reports consist of the effect of the porosity of the medium and the characteristics of the Non-Newtonian fluid on both the flow and heat.


2019 ◽  
Vol 15 (3) ◽  
pp. 673-684 ◽  
Author(s):  
Abiodun O. Ajibade ◽  
Jeremiah Jerry Gambo

Purpose The purpose of this paper is to analyze magnetohydrodynamics fully developed natural convection heat-generating/absorbing slip flow through a porous medium. Adomian decomposition method was applied to find the solutions to the problem. Design/methodology/approach In this study, Adomian decomposition method was used. Findings Results show that heat generation parameter enhanced the temperature and velocity of the fluid in the annulus. Moreover, slip effect parameter increases the velocity of the fluid. Originality/value Originality is in the application of Adomian decomposition method which allowed the slip at interface.


Author(s):  
Ioan Pop ◽  
Mohammad Ghalambaz ◽  
Mikhail Sheremet

Purpose – The purpose of this paper is to theoretically analysis the steady-state natural convection flow and heat transfer of nanofluids in a square enclosure filled with a porous medium saturated with a nanofluid considering local thermal non-equilibrium (LTNE) effects. Different local temperatures for the solid phase of the nanoparticles, the solid phase of porous matrix and the liquid phase of the base fluid are taken into account. Design/methodology/approach – The Buongiorno’s model, incorporating the Brownian motion and thermophoresis effects, is utilized to take into account the migration of nanoparticles. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the finite element method is utilized to solve the governing equations. Findings – The results show that the increase of buoyancy ratio parameter (Nr) decreases the magnitude of average Nusselt number. The increase of the nanoparticles-fluid interface heat transfer parameter (Nhp) increases the average Nusselt number for nanoparticles and decreases the average Nusselt number for the base fluid. The nanofluid and porous matrix with large values of modified thermal capacity ratios (γ p and γ s ) are of interest for heat transfer applications. Originality/value – The three phases of nanoparticles, base fluid and the porous matrix are in the LTNE. The effect of mass transfer of nanoparticles due to the Brownian motion and thermophoresis effects are also taken into account.


Author(s):  
B. Seshaiah ◽  
S.V.K. Varma

<div><p><em>The Objective of the present study is to investigate to free convection and mass transfer flow of a viscous incompressible and electrically conducting fluid through a porous medium bounded by vertical infinite surface with constant suction velocity and constant heat flux under the action of uniform magnetic field applied normal to the direction of flow.</em></p></div>


2016 ◽  
Vol 33 (5) ◽  
pp. 1610-1626 ◽  
Author(s):  
Madhu Macha ◽  
Kishan Naikoti ◽  
Ali J Chamkha

Purpose – The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying power-law model over a non-linear stretching sheet under the influence of thermal radiation with heat source/sink. Design/methodology/approach – The transverse magnetic field is applied normal to the sheet. The model used for the nanofluid incorporates the effects of Brownian motion with thermophoresis in the presence of thermal radiation. On this regard, thermophoresis effect on convective heat transfer on nanofluids are investigated simultaneously. The governing partial differential equations are reduced to ordinary differential equations by suitable similarity transformations which are solved numerically by variational finite element method. Findings – The computations carried out for some values of the power-law index, magnetic parameter, radiation parameter, Brownian motion and thermophoresis. The effect of these parameters on the velocity, temperature and nanoparticle volume fraction distribution are presented graphically. The skin friction coefficient, Nusselt number and Sherwood number for various values of the flow parameters of the problem are also presented. Originality/value – To the best of the authors’ knowledge, no investigations has been reported regarding the study of non-Newtonian nanofluids which obeying power-law model over a nonlinear stretching sheet. The principal aim of this paper is to study the boundary layer MHD flow of a non-Newtonian power-law model over a non-linear stretching sheet on a quotient viscous incompressible electrically conducting with a nanofluid.


2017 ◽  
Vol 27 (11) ◽  
pp. 2451-2480 ◽  
Author(s):  
Siva Reddy Sheri ◽  
Chamkha Ali. J. ◽  
Anjan Kumar Suram

Purpose The purpose of this paper is to analyze the thermal-diffusion and diffusion-thermo effects on magnetohydrodynamics (MHD) natural convective flow through porous medium in a rotating system with ramped temperature. Design/methodology/approach Using the non-dimensional variables, the flow governing equations along with corresponding initial and boundary conditions have been transformed into non-dimensional form. These non-dimensional partial differential equations are solved by using finite element method. This method is powerful and stable. It provides excellent convergence and flexibility in providing solutions. Findings The effects of Soret number, Dufour number, rotation parameter, magnetic parameter, Hall current parameter, permeability parameter, thermal Grashof number, solutal Grashof number, Prandtl number, thermal radiation parameter, heat absorption parameter, Schmidt number, chemical reaction parameter and time on the fluid velocities, temperature and concentration are represented graphically in a significant way and the influence of pertinent flow governing parameters on the skin frictions and Nusselt number are presented in tabular form. On the other hand, a comparison for validation of the numerical code with previously published work is performed, and an excellent agreement is observed for the limited case existing literature. Practical implications A very useful source of information for researchers on the subject of MHD flow through porous medium in a rotating system with ramped temperature. Originality/value The problem is moderately original, as it contains many effects like thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects and chemical reaction.


Sign in / Sign up

Export Citation Format

Share Document