Synthesis and characterisation of the halogen-free flame retardant and mechanical performance of the retardant epoxies resin

2017 ◽  
Vol 46 (3) ◽  
pp. 172-180 ◽  
Author(s):  
Bing Liang ◽  
Jiao Lv ◽  
Gang Wang ◽  
Tsubaki Noritatsu

Purpose The purpose of this paper is to prepare a novel halogen-free intumescent flame retardant (IFR) BHPPODC (benzene hydroquinone phosphorous oxy dichloride cyanuric chloride) for application to epoxy resin (EP) and study their mechanical and flame-retardant performance. Design/methodology/approach The IFR was synthesised by phenylphosphonic dichloride, hydroquinone and cyanuric chloride via solvent reaction, and the structure was fully characterised by proton nuclear magnetic resonance (1H-NMR), mass spectrometry (MS) and Fourier transform infrared (FT-IR) spectroscopy. The thermal stability, mechanical and flame properties and morphology of the char layer of the flame-retardant EP was investigated by using thermogravimetric analysis (TGA), tensile and Charpy impact tests, limiting oxygen index (LOI) and vertical burning test (UL-94) and scanning electron microscopy (SEM). Findings Results of the LOI indicated that the halogen-free flame retardant as an additive exhibits very good flame-retardant effects. The results showed that the addition of IFR improved the flame resistance properties of epoxies resin composites, and the residual char ratio at 800°C significantly increased. Research limitations/implications The IFR can be prepared successfully and can improve the flame-retardant performance. Practical implications This contribution can provide a high flame retardant performance and has minimal impact on the mechanical performance of the BHPPODC/EP composition. Originality/value This study showed that flame-retardant BHPPODC has an effective flame effect under optimal conditions. When the 12 Wt.% IFR was added to the EP, the LOI was 29.1 and the UL-94 rank can reach V-0 rank, the tensile strength was 83.86 MPa and the impact strength was 8.82 kJ/m2.

2018 ◽  
Vol 47 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Jiapeng Long ◽  
Sanxi Li ◽  
Bing Liang

Purpose This paper aims to study a new halogen-free flame retardant that was prepared and characterised. Design/methodology/approach The phenyl phosphinic arid di-4-[1-(4-pheny phodphonic acid monophenyl ester-yl)-methyl-ethyl] phenyester dimelaminium (PDEPDM) was synthesised using phenylphosphonic dichloride, melamine, bisphenol A, triethylamine and dichloromethane via solvent-based reaction, that was added into the polyethylene to test flame performance. The chemical structures of PDEPDM were characterised by 1H nuclear magnetic resonance spectroscopy, mass spectrometry and Fourier transform infrared spectrometer. The thermal stability, mechanical and flame properties, and morphology for the char layer of composite materials were separately investigated using thermogravimetric analysis, tensile and charpy impact tests, limiting oxygen index (LOI) and UL-94 HB flammability standard and scanning electron microscope. Findings The results showed that the PDEPDM had been prepared successfully. When the intumescent fame retardant was added into the PE, the LOI of composite material was improved. Research limitations/implications The PDEPDM can be prepared successfully and can improve the flame resistance of composite material. Practical implications The PDEPDM has excellent flame-retardant properties and produce no toxic fumes when burnt in case of fire. Originality/value Under the optimal conditions, when the 32 per cent (Wt.%) PDEPDM was added into the PE, the LOI was 29.8, tensile strength and impact strength were 10.06 MPa and 16.77 kJ/m2.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Lin Liu ◽  
Rui Lv

AbstractA DOPO (9,10-dihydro-9-oxa-10-phosphaphen-anthrene-10-oxide)-based halogen-free flame retardant (ODOPM-CYC) was synthesized and incorporated in rigid polyurethane foam (RPUF). The structure of ODOPM-CYC was characterized by Fourier transform infrared spectra (FTIR), 1H NMR and 31P NMR. The effects of ODOPM-CYC on the flame resistance, mechanical performances, thermal properties and cell structure of RPUF were also investigated. The results showed that the incorporation of ODOPM-CYC strikingly enhanced flame retardant properties of RPUF. The flame retarded RPUF acquired a limiting oxygen index (LOI) value of 26% and achieved UL-94 V-0 rating with the phosphorus content of 3 wt%. The smoke production rate (SPR) also showed an obvious decrease and total smoke release (TSR) was 39.8% lower than that of neat RPUF. Besides, the results demonstrated that the incorporation of ODOPM-CYC provided RPUF better thermal stability but did not show any obvious influence on its thermal conductivity.


2017 ◽  
Vol 37 (8) ◽  
pp. 827-835
Author(s):  
Song Zhao ◽  
Baiping Xu ◽  
Liang He ◽  
Huiwen Yu ◽  
Shouzai Tan

Abstract A thorough study was carried out to investigate the priority of a novel co-rotating non-twin screw extruder (NTSE) over a traditional twin screw extruder (TSE) in the mixing process of halogen-free intumescent flame-retardant acrylonitrile-butadiene-styrene (ABS) composites. The homogeneity of the flame-retardant additives of the composites processed by NTSE and TSE under the same operating conditions was characterized by using mechanical performance properties, limiting oxygen index values, UL-94 tests, and thermogravimetric analysis. All the results suggested that NTSE could achieve better mixing of the flame-retardant additives in the polymer matrix than TSE, which was further clarified by the scanning electron microscope pictures.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 415
Author(s):  
Sylwia Członka ◽  
Agnė Kairytė ◽  
Karolina Miedzińska ◽  
Anna Strąkowska

Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16–18%, flexural strength by ~9–12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics—in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.


2021 ◽  
Vol 22 (19) ◽  
pp. 10825
Author(s):  
Karolina Miedzińska ◽  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Krzysztof Strzelec

In this study, polyurethane (PU) composite foams were modified with 2 wt.% of vermiculite fillers, which were themselves modified with casein, chitosan, and potato protein. The impact of the fillers on selected properties of the obtained composites, including their rheological (foaming behavior, dynamic viscosity), thermal (temperature of thermal decomposition stages), flame-retardant (e.g., limiting oxygen index, ignition time, heat peak release), and mechanical properties (toughness, compressive strength (parallel and perpendicular), flexural strength) were investigated. Among all the modified polyurethane composites, the greatest improvement was noticed in the PU foams filled with vermiculite modified with casein and chitosan. For example, after the addition of modified vermiculite fillers, the foams’ compressive strength was enhanced by ~6–18%, their flexural strength by ~2–10%, and their toughness by ~1–5%. Most importantly, the polyurethane composites filled with vermiculite filler and modified vermiculite fillers exhibited improved flame resistance characteristics (the value of total smoke release was reduced by ~34%, the value of peak heat release was reduced by ~25%).


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4114 ◽  
Author(s):  
Fang Wang ◽  
Wenbo Shi ◽  
Yuliang Mai ◽  
Bing Liao

In this work, polyamide 6 (PA6) composites with improved flame retardancy and thermal conductivity were prepared with different thermal conductive fillers (TC fillers) such as aluminum nitride (AlN) and boron nitride (BN) in a PA6 matrix with aluminum diethylphosphinate (AlPi) as a fire retardant. The resultant halogen-free flame retardant (HFFR) and thermal conductive (TC) PA6 (HFFR-TC-PA6) were investigated in detail with a mechanical property test, a limiting oxygen index (LOI), the vertical burning test (UL-94), a cone calorimeter, a thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology of the impact fracture surface and char residue of the composites were analyzed by scanning electron microscopy (SEM). It was found that the thermal conductivity of the HFFR-TC-PA6 composite increased with the amount of TC fillers. The TC fillers exerted a positive effect for flame retardant PA6. For example, the HFFR-TC-PA6 composites with the thickness of 1.6 mm successfully passed the UL-94 V-0 rating with an LOI of more than 29% when the loading amount of AlN-550RFS, BN-SW08 and BN-NW04 was 30 wt%. The morphological structures of the char residues revealed that TC fillers formed a highly integrated char layer surface (without holes) during the combustion process, as compared to that of flame retardant PA6/AlPi composites. In addition, the thermal stability and crystallization behavior of the composites were studied.


2017 ◽  
Vol 35 (2) ◽  
pp. 99-117 ◽  
Author(s):  
Qianqiong Zhao ◽  
Congyan Chen ◽  
Ruilan Fan ◽  
Yong Yuan ◽  
Yalin Xing ◽  
...  

A halogen-free flame retardant containing nitrogen and phosphorus, 2-[anilino-(6-oxobenzo[c][2,1]benzoxaphosphinin-6-yl)methyl]phenol (PDOP), has been synthesized by reaction of benzo[c][2,1]benzoxaphosphinine-6-oxide (DOPO) with 2-( N-phenyliminomethyl)phenol. Halogen-free flame-retardant rigid polyurethane foams (RPUF-PDOP) were prepared using PDOP as a flame retardant. The flammability was investigated using limiting oxygen index, a vertical burning test (UL-94), and a cone calorimeter. When PDOP (10 wt%) as flame retardant was added to RPUF (RPUF-PDOP10%), the limiting oxygen index value was increased from 18% to 27%, and a UL-94 V-0 rating was achieved; meanwhile, the peak heat release rate, total heat release, and the average mass-loss rates of RPUF-PDOP10% were reduced from 246 to 207 kW m−2, from 26.9 to 21.0 MJ/m2, and from 0.043 to 0.033 g/s, respectively. Especially, the initial decomposition temperature of RPUF-PDOP10% was decreased from 228°C to 209°C. The final residual char from decomposition of RPUF-PDOP10% was significantly increased up to 35.6%. The addition of PDOP did not markedly decrease the mechanical properties of the resulting flame-retardant RPUFs.


2021 ◽  
Vol 22 (14) ◽  
pp. 7304
Author(s):  
Sylwia Członka ◽  
Agnė Kairytė ◽  
Karolina Miedzińska ◽  
Anna Strąkowska

In the following study, polyurethane (PUR) composites were modified with 2 wt.% of walnut shell filler modified with selected mineral compounds–perlite, montmorillonite, and halloysite. The impact of modified walnut shell fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), dynamic-mechanical behavior (glass transition temperature, storage modulus), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), and flame retardant properties (e.g., ignition time, limiting oxygen index, heat peak release) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with walnut shell filler functionalized with halloysite. For example, on the addition of such modified walnut shell filler, the compressive strength was enhanced by ~13%, flexural strength by ~12%, and impact strength by ~14%. Due to the functionalization of walnut shell filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in all cases, the value of peak heat release was reduced by ~12%, while the value of total smoke release was reduced by ~23%.


2012 ◽  
Vol 490-495 ◽  
pp. 3366-3369 ◽  
Author(s):  
Cong Liu

The flame-retardant of Lanthanum phenylphosphinate(LaPi) was prepared and its combination with intumescent flame retardant (IFR) in polypropylene (PP) was analysed using thermogravimetric analysis (TGA), limiting oxygen index (LOI) and the UL-94 test. Compared with using IFR alone, using the combination of LaPi and IFR gained the better classification in the UL 94 test thanks to the combination of the different mechanisms. When 20 wt% loading of flame retardant of LaPi and IFR, a halogen-free V-0 PP material was achieved with a LOI of 31%.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3656
Author(s):  
Hangfeng Yang ◽  
Hangbo Yue ◽  
Xi Zhao ◽  
Minzimo Song ◽  
Jianwei Guo ◽  
...  

A novel halogen-free flame retardant containing sulfonamide, 1,3,5,7-tetrakis (phenyl-4-sulfonamide) adamantane (FRSN) was synthesized and used for improving the flame retardancy of largely used polycarbonate (PC). The flame-retardant properties of the composites with incorporation of varied amounts of FRSN were analyzed by techniques including limited oxygen index, UL 94 vertical burning, and cone calorimeter tests. The new FR system with sulfur and nitrogen elements showed effective improvements in PC’s flame retardancy: the LOI value of the modified PC increased significantly, smoke emission suppressed, and UL 94 V-0 achieved. Typically, the composite with only 0.08 wt% of FRSN added (an ultralow content) can increase the limiting oxygen index (LOI) value to 33.7% and classified as UL 94 V-0 rating. Furthermore, the mechanical properties and SEM morphology indicated that the FRSN has very good compatibility with PC matrix, which, in turn, is beneficial to the property enhancement. Finally, the analysis of sample residues after burning tests showed that a high portion of char was formed, contributing to the PC burning protection. This synthesized flame retardant provides a new way of improving PC’s flame retardancy and its mechanical property.


Sign in / Sign up

Export Citation Format

Share Document