Innovative ecological method for producing easy care characteristics and antibacterial activity onto viscose fabric using glutaraldehyde and chitosan nanoparticles

2020 ◽  
Vol 49 (1) ◽  
pp. 11-18
Author(s):  
Khaled Mostafa ◽  
Azza El-Sanabary

Purpose This study aims to explore the incorporation of the authors previously prepared chitosan nanoparticles (CNPs) of size around 60-100 nm in the cross-linking formulation of viscose fabrics to see CNPs impact in terms of imparting multi-functional characteristics such as tensile strength, dry wrinkle recovery angles and antibacterial properties. Design/methodology/approach CNPs of size around 60-100 nm were incorporated in cross-linking formulations for viscose fabrics, including different concentrations of glutaraldehyde as a non-formaldehyde cross-linking agent and magnesium chloride hexahydrate as a catalyst. The formulations were applied at different curing times and temperatures in 100 mL distilled water, giving rise to a wet pickup of ca. 85 per cent. The fabrics were dried for 3 min at 85°C and cured at specified temperatures for fixed time intervals in thermo fixing oven according to the traditional pad-dry-cure method. Findings The above eco-friendly method for finished viscose fabrics was found to obtain high dry wrinkle recovery angle and maintain the tensile strength of the finished fabric within the acceptable range, as well as antibacterial properties against Escherichia coli and Staphylococcus aureus as a gram-negative and gram-positive bacteria, respectively. Both, scanning electron microscope and nitrogen percent on the finished fabric confirm the penetration of CNPs inside the fabric structure. Finally, viscose fabrics pageant antibacterial activity against gram-positive and gram-negative bacteria assessed even after 20 washing cycle. Research limitations/implications CNPs with its flourishing effect with respect to cationic nature, biodegradability, reactivity, higher surface area and antimicrobial activity; in addition to glutaraldehyde as non-formaldehyde finishing agent can be used as multi-functional agents for viscose fabrics instead of DMDHEU, polyacrylate and monomeric composites as hazardous materials. Practical implications CNPs as cationic biopolymers were expected to impart multi-functional properties to viscose fabrics especially with obtaining reasonable dry wrinkle recovery angle and tensile strength in addition to antibacterial properties. Originality/value The novelty addressed here is undertaken with a view to impart easy care characteristics and antibacterial activities onto viscose fabrics using CNPs as antimicrobial agent and glutaraldehyde as non-formaldehyde durable press finishes to-replace the traditional formaldehyde-based resins. Besides, to the authors’ knowledge, there is no published work so far using the above cross-linking formulation written above.

2018 ◽  
Vol 201 (8) ◽  
Author(s):  
Elizabeth Ward ◽  
Eun A Kim ◽  
Joseph Panushka ◽  
Tayson Botelho ◽  
Trevor Meyer ◽  
...  

ABSTRACTWhile the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied inEscherichia coliandSalmonella, less is known about the switch complex inBacillus subtilisor other Gram-positive species. Two component proteins (FliG and FliM) are shared betweenE. coliandB. subtilis, but in place of the protein FliN found inE. coli, theB. subtiliscomplex contains the larger protein FliY. Notably, inB. subtilisthe signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action inE. coli. Here, we have examined the architecture and function of the switch complex inB. subtilisusing targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, theB. subtilisswitch complex appears to be organized similarly to that inE. coli. The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that ofE. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences fromE. coliinvolve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCEFlagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex inBacillus subtilisor other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas inE. coliorSalmonellaCheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of theB. subtilisswitch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control inB. subtilisand other Gram-positive species.


2020 ◽  
Vol 49 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Hatem E. Gaffer ◽  
Ismail I. Althagafi

Purpose The purpose of this paper is to synthesize some new azobenzene dyestuffs clubbed with thiazolidinone moiety and their solicitation in dyeing polyester fabrics representing their antibacterial evaluation. Design/methodology/approach Herein, the authors report the synthesis of new thiazolidinone moiety after the coupling of diazotized 4-aminoacetophenone with resorcinol. The newly synthesized dyes were characterized by IR, elemental analysis, mass spectroscopy and proton nuclear magnetic resonance (1H NMR) spectral studies. The characteristics of dyeing of these dyestuffs were evaluated at optimum conditions. Concurrent with dyeing of polyester fabric for synthesized dyes with their antibacterial activity was estimated. Antimicrobial activity of the dyed fabrics at different concentrations was evaluated against gram-positive and gram-negative bacteria. Findings Synthesized azobenzene dyestuffs clubbed with thiazolidinone dyes were applied on polyester fabrics. It was remarked that the modified dyes exhibited better colourfastness properties. Furthermore, the synthesized dyes revealed antimicrobial activity against gram-positive and gram-negative bacteria. Research limitations/implications The synthesized azobenzene dyes for polyester dyeing were not bore earlier. Practical implications The azobenzene dyes were accountable for giving improved colourfastness properties on polyester fabrics. Social implications The synthesized azobenzene derivatives are sensibly expensive and applicable dyes accompanied with good antimicrobial and anticancer activities. Originality/value A common process could be affording textiles of colour and antibacterial assets. The newly synthesized dyes containing thiazolidinone moieties with azobenzene coupler showed interesting disperse colourant for polyester with good antibacterial activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
José Carlos Vilar Junior ◽  
Daylin Rubio Ribeaux ◽  
Carlos Alberto Alves da Silva ◽  
Galba Maria De Campos-Takaki

This research aims to study the production of chitosan from shrimp shell (Litopenaeus vannamei) of waste origin using two chemical methodologies involving demineralization, deproteinization, and the degree of deacetylation. The evaluation of the quality of chitosan from waste shrimp shells includes parameters for the yield, physical chemistry characteristics by infrared spectroscopy (FT-IR), the degree of deacetylation, and antibacterial activity. The results showed (by Method 1) extraction yields for chitin of 33% and for chitosan of 49% and a 76% degree of deacetylation. Chitosan obtained by Method 2 was more efficient: chitin (36%) and chitosan (63%), with a high degree of deacetylation (81.7%). The antibacterial activity was tested against Gram-negative bacteria (Stenotrophomonas maltophiliaandEnterobacter cloacae) and Gram-positiveBacillus subtilisand the Minimum Inhibitory Concentrations (MIC) and the Minimum Bactericidal Concentration (MBC) were determined. Method 2 showed that extracted chitosan has good antimicrobial potential against Gram-positive and Gram-negative bacteria and that the process is viable.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kh M. Mostafa ◽  
A. A. Elsanabary

Purpose This study aims to use multi-functional viscose fabric that was facilely developed with with respect to ease and care characteristics, reinforcement effect and antibacterial activity by using novel echo friendly antibacterial finish based on citric acid/sodium hypophosphite and the authors’ previously tailor-made poly meth acrylic acid (MAA)-chitosan graft copolymer via alternative microwave curing approach instead of traditional high-temperature cure one. Design/methodology/approach Viscose fabric was paddled twice in the cross-linking formulations containing different concentrations of citric acid, poly (MAA)-chitosan graft copolymer and sodium hypophosphite to 90 % wet pick up and dried at 100°C for 3 min in an electric oven. Then, the treated fabrics were placed on the disk spinner of the microwave oven and cured at different power (100–800 Watt) for various durations (60–180 s). The fabric was then water-rinsed and dried at ambient condition before use. Findings Results revealed that the above echo friendly method for finished viscose fabrics was found to achieve relatively high dry wrinkle recovery angle and maintain the loss in tensile strength within the acceptable range, as well as antibacterial activity against Escherichia coli and Staphylococcus aureus as a gram-negative and gram-positive bacteria, respectively; in addition to durability up to ten washing cycles. Furthermore, scanning electron microscope images, nitrogen content and add on % of the finished fabric confirmed the penetration of grafted chitosan inside the fabric structure. The tentative mechanism for these reactions is advocated. Originality/value The novelty addressed here is undertaken with the advantages of using citric acid as a nonformaldehyde, safe and cheap poly carboxylic acid as a crosslinking agent and sodium hypophosphite as a potential catalyst, in addition to the authors’ noncitable multifunctional echo friendly tailor-made poly (MAA)-chitosan graft copolymer for imparting reinforcement and antibacterial characteristics to viscose fabric that uses the pad-dry/cure microwave fixation for progressively persuaded heat within the fabric during curing. Research limitations/implications This was done to see the impact of microwave as green and efficient tool with respect to reduction in organic solvents, chemicals and exposer time as well as fixation temperature on the finishing reaction in comparison with traditional pad-dry-cure method. Practical implications Poly (MAA)-chitosan graft copolymer as amphoteric biopolymer was expected to impart multifunctional properties to viscose fabrics especially with comparable dry wrinkle recovery angle and minimize the loss in tensile strength in addition to antibacterial properties in comparison with untreated one.


1947 ◽  
Vol 134 (877) ◽  
pp. 538-543 ◽  

A series of basic derivatives of cholane and norcholane has been examined for bacteriostatic activity against the Gram-positive Staphylococcus aureus and Lactobacillus helveticus and the Gram-negative Bacillus lactis aerogenes . The basic derivatives, in general, were more highly bacteriostatic against the Gram-positive organisms than against the Gram-negative. Of the compounds studied, the highest antibacterial activity was shown by 3:7:12-trihydroxy-23-guanido-norcholane hydrochloride. No relationship was apparent between the lowering of the surface tension of the medium induced by the compounds and their bacteriostatic activity.


2014 ◽  
Vol 59 (1) ◽  
pp. 467-474 ◽  
Author(s):  
Michael D. Huband ◽  
Patricia A. Bradford ◽  
Linda G. Otterson ◽  
Gregory S. Basarab ◽  
Amy C. Kutschke ◽  
...  

ABSTRACTAZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potentin vitroantibacterial activity against key Gram-positive (Staphylococcus aureus,Staphylococcus epidermidis,Streptococcus pneumoniae,Streptococcus pyogenes, andStreptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzaeandNeisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance inS. aureus, and if mutants were obtained, the mutations mapped togyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration andin vitrotime-kill studies. Inin vitrocheckerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potentin vitroantibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.


2018 ◽  
Vol 7 (7) ◽  
Author(s):  
Saefuddin Aziz ◽  
Yvonne Mast ◽  
Wolfgang Wohlleben ◽  
Harald Gross

Streptomyces sp. strain SW4 exhibited broad-spectrum antibacterial activity toward Gram-positive and Gram-negative pathogens.


2021 ◽  
Author(s):  
M.M. Abd El-Hady ◽  
A. Farouk ◽  
S. El-Sayed Saeed ◽  
S. Zaghloul

Abstract Medical textiles are one of the most rapidly growing parts of the technical textiles sector of the textile industry. This work was developed for biocompatible materials of curcumin / TiO2 nanocomposite fabricated on the surface of cotton fabric for medical applications. Cotton fabric was pretreated with three crosslinking agents namely, citric acid, Quat-188, and GPTMS. Applying nanocomposite on modified cotton fabric using pad-dry cure method. The chemistry and morphology of modified fabrics are examined by Fourier-transformed infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. In addition, the chemical mechanism for nanocomposite modified fabric was reported. UV protection (UPF) and antibacterial properties against Gram - positive S. aureus and Gram - negative E. coli bacterial strains were investigated. The durability of fabrics to 20 washing cycles was also examined. Results demonstrated that nanocomposite modified cotton fabric exhibited superior antibacterial activity against Gram - negative bacteria that Gram - positive bacteria and excellent UV protection properties. Moreover, good durability was obtained, possibly due to the effect of the crosslinker used. Among the three pre-modification of cotton fabric, Quat-188 modified fabric reveals the highest antibacterial activity comparing with citric acid or GPTMS modified fabrics. This outcome suggested that curcumin / TiO2 nanocomposite Quatt-188 modified cotton fabric could be used in biomedical textile as antibacterial properties.


2011 ◽  
Vol 55 (6) ◽  
pp. 2860-2871 ◽  
Author(s):  
Michael J. Pucci ◽  
Steven D. Podos ◽  
Jane A. Thanassi ◽  
Melissa J. Leggio ◽  
Barton J. Bradbury ◽  
...  

ABSTRACTACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistantStaphylococcus aureus(MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency againstHaemophilus influenzae,Moraxella catarrhalis, and aNeisseriasp. but was less active against members of theEnterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well asLegionella pneumophilaandMycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10× MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple.In vivoefficacy was demonstrated againstS. aureuswith murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (≤0.25 μg/ml) against staphylococcal strains with single mutations in bothgyrAandgrlA(parC), retention of good antibacterial activity (MICs of ≤0.5 μg/ml) against staphylococcal strains with two mutations in bothgyrAandgrlA, and low frequencies for the selection of higher-level resistance (<10−10). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Gary P. Richards ◽  
David S. Needleman ◽  
Michael A. Watson ◽  
Shawn W. Polson

Highly vesiculated Pseudoalteromonas piscicida strains DE1-A and DE2-A were isolated from seawater and show bactericidal properties toward Vibrio vulnificus and other Gram-positive and Gram-negative bacteria. Here, we report the complete genome sequences of these two P. piscicida strains and identify proteolytic enzymes potentially involved in their antibacterial properties.


Sign in / Sign up

Export Citation Format

Share Document