Printability of paper and paperboard surface treatment with gum rosin and derivatives

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsen Ezel Bildik Dal ◽  
Yağmur Biricik ◽  
Sinan Sönmez

Purpose This study aims to provide control of liquids, especially against water-based ink on the paper and paperboard surface with natural substances, in also practical and greenway. Design/methodology/approach The paper surface was treated with natural rosin and its derivatives to obtain a hydrophobic effect and to improve printing properties. The oleoresin samples collected from Pinus nigra Arnold and Pinus pinaster Aiton trees in the controlled area and turpentine content removed was by hydrodistillation. The gum rosin (GR), fortified 10% with maleic anhydride (MGR) and esterified with 10% pentaerythritol (PMGR) samples solved in a simply alcohol and sprayed the base paper surface directly with a spray gun. Base paper samples were paperboard, bleached paper and test liner paper. Then, flexo printing was applied and printability properties were measured. Findings The treatment weights of these paper samples were 1.8 ± 0.5, 1.3 ± 0.5 and 0.7 ± 0.2 g/m2, respectively, compared to the base paper. Greater Cobb60 results were obtained from modified rosin samples than unmodified gum rosin-sized paperboards and the PMGR surface treatment reduces Cobb60 values by 20% and MGR treatment reduces 15% comparing to the base sheet. Then, the printing procedure was applied to the surface of the treated materials using a flexo printing system. As a result of the treatment better print density, chroma and print lightness value consumed a less hydrophobic agent and controlling water-based flexo ink on the base paper surface. Originality/value The unique aspect of this work was improving the hydrophobicity of the paper surfaces was achieved by spraying with natural rosin and derivatives.

2020 ◽  
Vol 49 (3) ◽  
pp. 239-248
Author(s):  
H. Abd El-Wahab ◽  
G. El-Meligi ◽  
M.G. Hassaan ◽  
A. Kazlauciunas ◽  
Long Lin

Purpose The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry. Design/methodology/approach Various nano-emulsions of copolymers were prepared using styrene (St), butyl acrylate (BuAc), acrylic acid (AA) and acrylamide (AAm) monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). A selection of copolymers was formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their viscosity, pH, degree of dispersion, water resistance and colour density. Findings It was found that the low viscosity of the prepared copolymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified polyacrylate-based latex with improved physico-mechanical properties were obtained. The prepared latexes were showed improving and enhancing in water resistance; gloss values, and the print density that ranged from 2.06 to 2.51 and the maximum gloss values (39 and 48) were also obtained. Also, these binders provide excellent adhesion properties for both the pigment particles and the base paper. Practical implications This study focuses on the preparation of new water-based copolymer nanoparticles and their use as eco-friendly binders for flexographic ink industry. Social implications The ink formulations developed could find use in industrial-scale printing. Originality/value Eco-friendly environment ink formulations for printing on paper substrates are novel.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chenfei Zhao ◽  
Jun Wang ◽  
Lini Lu

Purpose In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and good precision in modern electronic printing. The purpose of this study is to solve the high cost of traditional printing and the pollution emissions of organic ink. It is necessary to develop a water-based conductive ink that is easily degradable and can be 3 D printed. A nano-silver ink printed circuit pattern with high precision, high conductivity and good mechanical properties is a promising strategy. Design/methodology/approach The researched nano-silver conductive ink is mainly composed of silver nanoparticles and resin. The effect of adding methyl cellulose on the ink was also explored. A simple 3 D circuit pattern was printed on photographic paper. The line width, line length, line thickness and conductivity of the printed circuit were tested. The influence of sintering temperature and sintering time on pattern resistivity was studied. The relationship between circuit pattern bending performance and electrical conductivity is analyzed. Findings The experimental results show that the ink has the characteristics of low silver content and good environmental protection effect. The printing feasibility of 3 D printing circuit patterns on paper substrates was confirmed. The best printing temperature is 160°C–180°C, and the best sintering time is 30 min. The circuit pattern can be folded 120°, and the cycle is folded more than 60 times. The minimum resistivity of the circuit pattern is 6.07 µΩ·cm. Methyl cellulose can control the viscosity of the ink. The mechanical properties of the pattern have been improved. The printing method of 3 D printing can significantly reduce the sintering time and temperature of the conductive ink. These findings may provide innovation for the flexible electronics industry and pave the way for alternatives to cost-effective solutions. Originality/value In this study, direct ink writing technology was used to print circuit patterns on paper substrates. This process is simple and convenient and can control the thickness of the ink layer. The ink material is nonpolluting to the environment. Nano-silver ink has suitable viscosity and pH value. It can meet the requirements of pneumatic 3 D printers. The method has the characteristics of simple process, fast forming, low cost and high environmental friendliness.


2013 ◽  
Vol 33 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Jianfeng Xu ◽  
Ling Long ◽  
Huiren Hu

Abstract A series of cationic starch (CS-8)-based styrene (St) acrylate latex preparations was prepared by the core-shell emulsion polymerization method. The latex was used in the surface-treatment of decorative base papers, for good printability and absorbability. CS-8, which has a low relative viscosity, was used as the emulsifier and dispersant. The influencing factors (dosage of CS-8 as well as the kinds and dosages of functional monomers) were studied and the optimal conditions were achieved. Then, the products were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR), laser particle size analysis and particle charge detection. The results showed that the excellent performance and good surface-treatment effects of the St acrylate emulsion (SAE) were achieved when the reaction conditions were as follows: 10 wt% starch, 2 wt% methacryloyloxyethyltrimethyl ammonium chloride (DMC) as the cationic monomer and 20 wt% ethyl acrylate (EA) as the acrylate monomer. Under the optimal conditions, the latex particle size was around 160 nm, the latex viscosity was 10 mPa·s and the latex charge density was 0.60 mmol·l-1. The printability of the decorative base paper was significantly improved and the absorbability of the paper sheet was maintained. The surface-treatment effect of the cationic starch-based SAE was superior to that of commercial polyurethane (PU).


2007 ◽  
Vol 80 (1) ◽  
pp. 139-158 ◽  
Author(s):  
M. Virtudes Navarro-Bañón ◽  
M. Mercedes Pastor-Blas ◽  
José Miguel Martín-Martínez

Abstract As environmental friendly alternative to the halogenation treatment with trichloro isocyanuric acid solutions in organic solvents (TCI/MEK), in this study a water-based surface treatment for rubber materials based in chloramine T aqueous solutions has been proposed. It was found that the effectiveness of chloramine T (CT) (N-chloro-sodium-p-toluenesulphenamide) as chlorinating agent for rubber depends on the pH of the chlorinating solution. The surface modifications and adhesion in one SBS rubber treated with aqueous solutions of CT has been studied. Acidification of CT aqueous solutions produced the formation of dichloramine T (DCT) and hypochlorous acid (HClO), species which reacted with C = C bonds of the butadiene units. A decrease in the pH of the CT aqueous solutions produced more extended surface modifications and improved adhesion properties in the joints produced with chlorinated SBS rubber and waterborne polyurethane adhesive. T-peel strength values obtained were slightly lower than those obtained for the SBS rubber surface treated with the organic solvent chlorinating system (TCI/MEK). The solvent effect leading to local swelling and therefore to deeper modifications in the rubber near surface properties was not present with water based solutions, and then, the modifications were much more superficial. On the other hand, acidification with hydrochloric acid produces deposition of NaCl crystals on the SBS rubber surface. Thus, acidification of the chloramines T solution with sulfuric acid was preferable.


2017 ◽  
Vol 29 (2) ◽  
pp. 69-74 ◽  
Author(s):  
József Hlinka ◽  
Miklós Berczeli ◽  
Gábor Buza ◽  
Zoltán Weltsch

Purpose This paper aims to discuss the effect of surface treatment on the wettability between copper and a lead-free solder paste. The industrial applications of laser technologies are increasing constantly. A specific laser treatment can modify the surface energy of copper and affect the wetting properties. Design/methodology/approach The surfaces of copper plates were treated using an Nd:YAG laser with varying laser powers. After laser surface treatment, wetting experiments were performed between the copper plates and SAC305 lead-free solder paste. The effect of laser treatment on copper surface was analysed using optical microscopy and scanning electron microscopy (SEM). Findings The experimental results showed that the wetting contact angles changed with the variation in laser power. Furthermore, it means that the surface energy of copper plates was changed by the laser treatment. The results demonstrated that the contact angles also changed when a different soldering paste was used. Originality/value Previous laser surface treatment can be a possible way to optimize the wettability between solders and substrates and to increase the quality of the soldered joints.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Freya Harrison ◽  
Aled E. L. Roberts ◽  
Rebecca Gabrilska ◽  
Kendra P. Rumbaugh ◽  
Christina Lee ◽  
...  

ABSTRACT Plant-derived compounds and other natural substances are a rich potential source of compounds that kill or attenuate pathogens that are resistant to current antibiotics. Medieval societies used a range of these natural substances to treat conditions clearly recognizable to the modern eye as microbial infections, and there has been much debate over the likely efficacy of these treatments. Our interdisciplinary team, comprising researchers from both sciences and humanities, identified and reconstructed a potential remedy for Staphylococcus aureus infection from a 10th century Anglo-Saxon leechbook. The remedy repeatedly killed established S. aureus biofilms in an in vitro model of soft tissue infection and killed methicillin-resistant S. aureus (MRSA) in a mouse chronic wound model. While the remedy contained several ingredients that are individually known to have some antibacterial activity, full efficacy required the combined action of several ingredients, highlighting the scholarship of premodern doctors and the potential of ancient texts as a source of new antimicrobial agents. IMPORTANCE While the antibiotic potential of some materials used in historical medicine has been demonstrated, empirical tests of entire remedies are scarce. This is an important omission, because the efficacy of “ancientbiotics” could rely on the combined activity of their various ingredients. This would lead us to underestimate their efficacy and, by extension, the scholarship of premodern doctors. It could also help us to understand why some natural compounds that show antibacterial promise in the laboratory fail to yield positive results in clinical trials. We have reconstructed a 1,000-year-old remedy which kills the bacteria it was designed to treat and have shown that this activity relies on the combined activity of several antimicrobial ingredients. Our results highlight (i) the scholarship and rational methodology of premodern medical professionals and (ii) the untapped potential of premodern remedies for yielding novel therapeutics at a time when new antibiotics are desperately needed.


2019 ◽  
Vol 48 (6) ◽  
pp. 515-522
Author(s):  
Jia Xu ◽  
Jingyu Zhang ◽  
Jiahan Xu ◽  
Guangyuan Miao ◽  
Long Feng ◽  
...  

Purpose Nanotechnology has been able to bind to a wide range of functional textiles in recently. This paper aims to modify graphene oxide (GO) by grafting dimethyl phosphite and perfluorohexyl iodine. It was applied to cotton to obtain a flame-retardant, water-repellent and ultraviolet-resistant multifunctional fabric. Design/methodology/approach The GO-multi was synthesized by grafted dimethyl phosphite and perfluorohexyl chain and applied to cotton by the dipping-drying method. The surface chemistry of functionalized GO was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The thermal stability of the fabric was characterized by thermogravimetric analysis (TGA). The combustion properties were evaluated using a microscale combustion calorimeter, match test and TGA. Hydrophobicity of film and fabric surface was characterized by static contact angle, and the UV resistance of the fabric was represented by the ultroviolet procetion factor (UPF) value. Findings Dimethyl phosphite and perfluorohexyl chains were grafted on the surface of GO successively. In the match test, the GO-multi/cotton kept the original outline of the fabric. According to the micro-scale combustion calorimetry (MCC) data, the value of PHRR and THR of GO-multi/cotton was about 45 per cent lower than that of untreated cotton fabric. It was found from the field-emission scanning electron microscopy (SEM) pictures that the residue of GO-multi/ cotton burned by the match method was more compact and the graphene lamellar structure remained more complete. The hydrophobic effect of GO-multi/cotton was improved compared to untreated cotton, but not better than the fabric treated by the perfluorohexyl chain-grafted GO. The UPF value of GO-multi/cotton reached 253, which indicated that the anti-ultraviolet performance of GO-multi was greatly improved after it was deposited on the cotton fabric. Research limitations/implications Although the hydrophobic effect was much higher than that of untreated cotton fabric, its hydrophobic effect was not satisfied, which may be due to the fact that the content of F element content was low. So, it is still needed to explore the modifying method to increase the functional component amount on the GO nanosheet. Practical implications This modifying method can be used in any of multifunctional textile preparation process. The hydrophobic and flame-retardant cotton fabric revealed a sample for use in outdoor sports such as clothes and tents. Originality/value To meet the needs of multifunctional cotton fabrics, the modification of GO with dimethyl phosphite and perfluorohexyl iodine has not been reported. The modified fabric has flame-retardant, UV-resistant and hydrophobic properties.


2020 ◽  
Vol 49 (6) ◽  
pp. 473-482
Author(s):  
H. Abd El-Wahab ◽  
G.A. Meligi ◽  
M.G. Hassaan ◽  
L. Lin

Purpose The purpose of this study is to prepare, characterise and evaluate nano-emulsions of ter-polymers of various compositions as eco-friendly binders for flexographic ink industry. Design/methodology/approach Various nano-emulsions of ter-polymers were prepared based on Vinyl acetate, Vinyl Versatate, butyl acrylate, acrylic acid and acrylamide monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared, thermo-gravimetric analysis, gel permeation chromatography and transmission electron microscopy. A selection of co-polymers and ter-polymers were formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their rheological properties, pH, degree of dispersion, water-resistance and colour density. Findings It was found that the low viscosity of the prepared polymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified poly acrylate-based latex with improved physico-mechanical properties was obtained. The prepared latexes showed improved properties such as enhanced thermal stability and better water resistance. The effect of the emulsifier type on the properties of the resulting emulsion latexes and their corresponding films were investigated. Also, as the hydrophobic monomer increases, so does the colour density and increasing the binder ratio enhances the gloss values. The improving in gloss values were obtained and provide excellent adhesion properties for both the pigment particles and the base paper. Research limitations/implications The study focusses on the preparation of new water-based ter-polymer nano-particles and their use as eco-friendly binders for flexographic ink industry. Ink formulations based on other different type emulsion polymers could also be studied to assess the applicability of the ink formulation system found for other binders. Practical implications The ink formulations developed could find use in industrial-scale printing. Originality/value Eco-friendly environment and low-cost ink formulations for printing on paper substrates are novel.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (3) ◽  
pp. 7-13
Author(s):  
ABDIEL PINO ◽  
JOSEP PLADELLORENS ◽  
JOSEP F. COLOM ◽  
ORIOL CUSOLA ◽  
AGUSTÍN TOSAS

Paper surface roughness is an important consideration in paper and board destined for printing. The amount of coating and method of application depend on the roughness of the base paper. We present a method to measure the roughness of the paper based on analysis of speckle pattern on the surface. Images are captured by means of a simple configuration using a laser and a charge-coupled device (CCD) camera. Then, we apply digital image processing using a co-occurrence matrix, providing for a noncontact surface profiling method that can be used online.


2015 ◽  
Vol 660 ◽  
pp. 369-376
Author(s):  
Vasile Pelin ◽  
Ioana Huțanu ◽  
Eugen Borş ◽  
Viorica Vasilache ◽  
Ion Sandu ◽  
...  

During the consolidation and rehabilitation interventions of George RaduMelidon City Library Roman, Neamţ County, a series of architectural terracotta decorations, manufactured in the second half of the century XIX, have been identified and cataloged. The current state of these decorations, made from geomaterials, requires the establishment of a technical solution which will be used to preserve, to strengthen the color, the aesthetic surface and the chromatic reintegration. Thus, the paper presents the study of four current commercial chemicals products, part of the additives hydrophobic/waterproofing group. One of the products is a water based emulsion, while the other three are organic based solvents. This study was required in order to develop an optimal treatment to preserve the old terracotta from facade of building already mentioned. The technical features that these products have in common are sealing and waterproofing by superficial coating, with an average penetration and restoration of chromatic aspect, as close to the original. CIE L*a*b* colorimetry, optical microscopy and the measure of humidity (reversible water content and related chemical) were implemented in the study of optimization of pellicle dispersion systems based on the four chemicals.


Sign in / Sign up

Export Citation Format

Share Document