Modification of Basic Dye with Clay

2014 ◽  
Vol 18 (1) ◽  
pp. 31-35
Author(s):  
Pey-Shin Ke ◽  
Wei-Jang Wu ◽  
Kuo-Shien Huang

We modified a basic dye, which carries a positive charge, by inducing an exchange with clay, and then analysed the results by using Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The intercalation of basic dye into clay modifies the thermal properties of the dye, and the dyes become more stable as more clay is added. The colour of the modified dyes does not change with the addition of more clay, although its absorption decreases, thereby conferring improved sunlight colour fastness on the modified dyes.

2013 ◽  
Vol 774-776 ◽  
pp. 629-633
Author(s):  
Ji Feng Jiang ◽  
Kang Kang Guo ◽  
Ya Ping Zhu ◽  
Fan Wang ◽  
Hui Min Qi

Triethynylborazine-polyhydromethylsiloxane copolymers (TEB-PHMSs) were prepared through hydrosilylation reaction between -C≡CH attached to boron and ≡Si-H. The structures of TEB-PHMSs were characterized by Fourier transform Infrared (FT-IR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Their cure behavior were examined by Differential Scanning Calorimeter (DSC) and FT-IR, and then thermostability and ceramization of cured TEB-PHMS were investigated by Thermogravimetric analysis (TGA), pyrolysis-GC-MS, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The results indicated that TEB-PHMSs could be cured and converted into an outstanding thermostable SiBCN ceramics.


2018 ◽  
Vol 56 (2A) ◽  
pp. 174-178
Author(s):  
Nguyen Thai Ngoc Uyen

In this study, the bio-nanocomposite composed of chitosan and nanoclay was prepared by solution intercalation method. The membrane was subsequently fabricated by dry/wet phase separation technique. The structure of bio-nanocomposite was characterized by Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) and scanning electron microscope (SEM). The membrane was applied to adsorb methylene blue (MB) for water treatment. The adsorption of MB was monitored through UV-Vis spectroscopy. The results showed that bionanocomposite membrane could adsorb MB up to 97.9 % in 150 min. The MB adsorption of bionanocomposite membrane was 234 times as high as the adsorption of the conventional chitosan films that is promising for environmental applications.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Iulia Mihai ◽  
Maria Ivanoiu ◽  
Loredana Vacareanu (Stafie) ◽  
Mircea Grigoras

AbstractTwo novel polyazines were successfully synthesized via palladiumcatalyzed Suzuki coupling method of N,N'-bis(5-bromothiophene)-2-aldehyd azine with 2,5-thiophenediboronic acid and 9,9-dioctylfluorene-2,7-diboronic acid, respectively. The polymers were characterized by 1H-NMR, FT-IR and UV-VIS spectroscopy. The thermal properties of the polymers were investigated by TGA analysis. The semi-crystalline structure of these compounds was demonstrated by X-ray diffraction study.


2020 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Azwan Morni

This study reports a green method for the synthesis of gold nanoparticles (AuNPs) using the aqueous extract of Salix aegyptiaca extract. The effects of gold salt concentration, extract concentration and extract quantity were investigated on nanoparticles synthesis. Novel methods of ideally synthesizing AuNPs are thus thought that are formed at ambient temperatures, neutral pH, low costs and environmentally friendly fashion. AuNPs were characterized with different techniques such as UV–vis spectroscopy, FT-IR spectroscopy, X-ray diffraction, and TEM. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary carbonyl group, -OH groups and other stabilizing functional groups. TEM experiments showed that these nanoparticles are formed with various shapes and X-ray diffraction pattern showed high purity and face centered cubic structure of AuNPs. For electrochemical properties of AuNPs, a modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated. The results show that electronic transmission rate between the modified electrode and [Fe (CN)6]3-/4- increased.


2018 ◽  
Vol 15 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Baghdad Science Journal

Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2018 ◽  
Vol 41 (5-6) ◽  
pp. 143-154 ◽  
Author(s):  
M. Cakmak ◽  
I.I. Ozturk ◽  
C.N. Banti ◽  
M. Manoli ◽  
E. Moushi ◽  
...  

Abstract New bismuth(III) bromine compounds of the heterocyclic thioamides were prepared and structurally characterized. The reaction of heterocyclic thioamides with bismuth(III) bromide resulted in the formation of the {[BiBr2(μ2-Br)(MMI)2]2·CH3COCH3·H2O} (1), {[BiBr2(MBZIM)4]·Br·2H2O} (2), {[BiBr2(μ2-Br)(tHPMT)2]2·CH3CN} (3), {[BiBr2(μ2-Br)(PYT)2]2·CH3CN} (4) and {[BiBr2(μ2-Br)(MBZT)2]2 2CH3OH} (5) complexes (MMI: 2-mercapto-1-methylimidazole, MBZIM: 2-mercaptobenzimidazole, tHPMT: 2-mercapto-3,4,5,6-tetrahydro-pyrimidine, PYT: 2-mercaptopyridine and MBZT: 2-mercaptobenzothiazole). The complexes 1–5 were characterized by melting point (m.p.), elemental analysis (e.a.), molar conductivity, Fourier-transform infrared (FT-IR), Fourier-transform Raman (FT-Raman), nuclear magnetic resonance (1H and 13CNMR) spectroscopy, UV-Vis spectroscopy and thermogravimetric-differential thermal analysis (TG-DTA). The molecular structures of 1–5 were determined by single-crystal X-ray diffraction. Complex 2 is a first ionic monomuclear octahedral bismuth(III) bromide, while the complexes 1, 3–5 are the first examples of dinuclear bismuth(III) bromide derivatives. Complexes 1–5 were evaluated in terms of their in vitro cytotoxic activity against human adenocarcinoma breast (MCF-7) and cervix (HeLa) cells. The toxicity on normal human fetal lung fibroblast cells (MRC-5) was also evaluated. Moreover, the complexes 1–5 and free heterocyclic thioamide ligands were studied upon the catalytic peroxidation of the linoleic acid by the enzyme lipoxygenase (LOX).


Author(s):  
R. K. Shukla ◽  
Susheel Kumar Singh ◽  
Akhilesh Tripathi

Polyaniline (PANI) is synthesized by chemical oxidative polymerization method. The, characterization were made using XRD (X-ray diffraction), FT-IR (Fourier transform spectroscopy), UV -vis (ultra-violet visible spectrophotometer) technique which confirms the synthesis of the Polyaniline. The surface morphology of Polyaniline was studied with scanning electron microscope (SEM).


NANO ◽  
2013 ◽  
Vol 08 (03) ◽  
pp. 1350032 ◽  
Author(s):  
CHUNNIAN CHEN ◽  
CHENWEI YU ◽  
WEN FU

GO/ Cu2O nanocomposite had been successfully synthesized by electrostatic interactions method. X-ray powder diffraction (XRD), transmission electron microscope (TEM), selective-area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra confirmed the structure of the Cu2O and GO/ Cu2O nanocomposite. The catalytic degradation of Rhodamine B under the condition of ultrasound was investigated and the result of UV-Vis spectroscopy demonstrated that the nanocomposite can efficiently degraded it.


Sign in / Sign up

Export Citation Format

Share Document