Mechanical meta-material-based polymer skin graft production by rapid prototyping and replica method

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamad Attar ◽  
Seher Selen Aydin ◽  
Aliye Arabaci ◽  
Ilven Mutlu

Purpose The purpose of this paper is the production of mechanical meta-material samples by rapid prototyping (RP) and replica technique for patient-specific skin graft or cranial implant applications in tissue engineering. Design/methodology/approach Positive moulds (patterns) were produced by stereolithography-based RP. Impression moulding method was used for the production of silicone products (skin grafts). Alginate was used as a moulding material (negative mould). Room temperature vulcanising silicone was poured into the cavity of alginate mould and then products were produced. TiO2 powder and carbon fibres were used as reinforcement. Meta-material structured polyurethane reinforced silicone composites were also produced. Liquid components (diisocyanate and polyol) were poured into the mould and then polyurethane was produced. Then, polyurethane was immersed in the liquid silicone. Findings It is found that non-destructive ultrasonic test is a fast and reliable method. Meta-material-based composites show dome-shaped tensile/synclastic surface properties which are important for the skin graft and cranial implants. Increasing the amounts of cross-linking agent and TiO2 particles increased the hardness and elastic modulus. Carbon fibre addition enhanced the elastic modulus. Originality/value Although there are studies on the meta-materials, there is limited study on the RP of the meta-materials for patient-specific implants (skin grafts). Auxetic surface shows perfect fit to curved surface of the skull. Although there are studies on the silicone and polyurethane composites, there is limited study on the characterisation of mechanical properties by ultrasonic tests and strain gauge analysis.

2021 ◽  
Vol 11 (16) ◽  
pp. 7604
Author(s):  
Johari Yap Abdullah ◽  
Abdul Manaf Abdullah ◽  
Low Peh Hueh ◽  
Adam Husein ◽  
Helmi Hadi ◽  
...  

Reconstructing a large skull defect is a challenge, as it normally involves the use of sophisticated proprietary image processing and expensive CAD software. As an alternative, open-source software can be used for this purpose. This study aimed to compare the 3D cranial implants reconstructed from computed tomography (CT) images using the open-source MITK software with commercial 3-matic software for ten decompressive craniectomy patients. The shape-based interpolation method was used, in which the technique of segmenting every fifth and tenth slice of CT data was performed. The final design of patient-specific implants from both software was exported to STL format for analysis. The results of the Kruskal–Wallis test for the surface and volume of cranial implants designed using 3-matic and the two MITK techniques showed no significant difference, p > 0.05. The results of the Hausdorff Distance (HD) and Dice Similarity Coefficient (DSC) analyses for cranial implants designed using 3-matic software and the two different MITK techniques showed that the average points distance for 3-matic versus MITK was 0.28 mm (every tenth slice) and 0.15 mm (every fifth slice), and the similarity between 3-matic and MITK on every tenth and fifth slices were 85.1% and 89.7%, respectively. The results also showed that the open-source MITK software is comparable with the commercial software for designing patient-specific implants.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


2019 ◽  
Vol 25 (5) ◽  
pp. 888-894
Author(s):  
Behnam Gomari ◽  
Farzam Farahmand ◽  
Hassan Farkhondeh

Purpose An important challenge of the osteotomy procedures, particularly in the case of large and complex corrections, is the fixation of the osteotomy site. The purpose of this study is to propose a practical and cost-effect methodology for the plate adapting problem of osteotomy surgery. Design/methodology/approach A novel patient-specific plate contouring methodology, based on rapid prototyping (RP) and multi-point forming (MPF) techniques, was developed and evaluated. In this methodology, a female mold is fabricated by RP, based on the geometry of the osteotomy site and estimation of the plate spring back. The mold is then used to configure a MPF die, which is then used for press forming of the factory-made locking plate. The applicability of the methodology was assessed in two case studies. Findings The results of implementing the methodology on a femoral and a tibial locking plate indicated very good conformity with the underlying bone, in both the frontal and sagittal planes. The surgical application of the pre-operatively contoured tibial plate facilitated the plate locating and screw inserting procedures, and provided a secure fixation for bone fragments. Practical implications The results are promising and provide a proof of concept for the feasibility and applicability of the proposed methodology in clinical practice, as a complementary to the existing surgical preplanning and patient-specific instrument preparations. Originality/value The advantageous features of RP and the MPF were used to provide a solution for the plate adapting problem of osteotomy surgery.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dilpreet Singh ◽  
Bhavuk Garg ◽  
Pulak Mohan Pandey ◽  
Dinesh Kalyanasundaram

Purpose The purpose of this paper is to establish a methodology for the design and development of patient-specific elbow implant with an elastic modulus close to that of the human bone. One of the most preferred implant material is titanium alloy which is about 8 to 9 times higher in strength than that of the human bone and is the closest than other metallic biomedical materials. Design/methodology/approach The methodology begins with the design of the implant from patient-specific computed tomography information and incorporates the manufacturing of the implant via a novel rapid prototyping assisted microwave sintering process. Findings The elastic modulus and the flexural strength of the implant were observed to be comparable to that of human elbow bones. The fatigue test depicts that the implant survives the one million cycles under physiological loading conditions. Other mechanical properties such as impact energy absorption, hardness and life cycle tests were also evaluated. The implant surface promotes human cell growth and adhesion and does not cause any adverse or undesired effects i.e. no cytotoxicity. Practical implications Stress shielding, and therefore, aseptic loosening of the implant shall be avoided. In the event of any trauma post-implantation, the implant would not hurt the patient. Originality/value The present study describes a methodology for the first time to be able to obtain the strength required for the medical implant without sacrificing the fatigue life requirement.


2021 ◽  
pp. 194338752110043
Author(s):  
Danyon O. Graham ◽  
Christopher G. T. Lim ◽  
Peter Coghlan ◽  
Jason Erasmus

Post-traumatic reconstruction of the orbit can pose a challenge due to inherent intraoperative problems. Intra-orbital adipose tissue is difficult to manipulate and retract making visualization of the posterior orbital contents difficult. Rapid prototyping (RP) is a cost-effective method of anatomical model production allowing the surgeon to produce a patient specific implant (PSI) which can be pre-surgically adapted to the orbital defect with exact reconstruction. Intraoperative imaging allows immediate assessment of reconstruction at the time of surgery. Utilization and combination of both technologies improves accuracy of reconstruction with orbital implants and reduces cost, surgical time, and the rate of revision surgery.


Author(s):  
Katherine Beaulieu ◽  
Ryan Alkins ◽  
Randy E Ellis ◽  
Manuela Kunz

During craniotomies, a portion of the calvarium or skull is removed to gain access to the intracranial space. When it is not possible to re-implant the flap, surgeons may repair the defect intraoperatively or at a later date. With larger defects being more difficult to repair intraoperatively, we investigated a method for the creation of patient-specific moulds for ad hoc bone flap reconstruction using rapid prototyping. Patient-specific moulds were created based on light scanned models of the defect, using custom software and rapid prototyping. Polymethylmethacrylate bone implants were created for three retrospective craniotomy cases and evaluated based on original flap and skull reconstruction accuracy. Bone implants created using our moulding method reconstruct the original flap and skull with an average reconstruction accuracy of 0.82 and 1.3 mm, respectively. Average skull reconstruction accuracy obtained by surgeons performing freehand implant reconstruction was 1.49 mm. Time needed to generate moulds was between 2 h and 45 min and 6 h and 20 min. Improvements to current printing technology will make this procedure technically feasible for future cranial procedures.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jianning Li ◽  
Christina Gsaxner ◽  
Antonio Pepe ◽  
Ana Morais ◽  
Victor Alves ◽  
...  

AbstractPatient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. Currently, cranial implants are designed and produced by third-party suppliers, which is usually time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital or in-operation-room fabrication of personalized implants feasible. However, the implants are still manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently great potential towards automatic implant design. However, a considerable amount of data is needed to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, automatic implant design and manufacturing processes can be trained. Additionally, the data of this work build a solid base for researchers to work on automatic cranial implant designs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Neha Sharma ◽  
Daniel Ostas ◽  
Horatiu Rotar ◽  
Philipp Brantner ◽  
Florian Markus Thieringer

Reconstruction of cranial defects is an arduous task for craniomaxillofacial surgeons. Additive manufacturing (AM) or three-dimensional (3D) printing of titanium patient-specific implants (PSIs) made its way into cranioplasty, improving the clinical outcomes in complex surgical procedures. There has been a significant interest within the medical community in redesigning implants based on natural analogies. This paper proposes a workflow to create a biomimetic patient-specific cranial prosthesis with an interconnected strut macrostructure mimicking bone trabeculae. The method implements an interactive generative design approach based on the Voronoi diagram or tessellations. Furthermore, the quasi-self-supporting fabrication feasibility of the biomimetic, lightweight titanium cranial prosthesis design is assessed using Selective Laser Melting (SLM) technology.


Neurosurgery ◽  
2015 ◽  
Vol 77 (5) ◽  
pp. 814-824 ◽  
Author(s):  
David J. Bonda ◽  
Sunil Manjila ◽  
Warren R. Selman ◽  
David Dean

AbstractLarge format (ie, >25 cm2) cranioplasty is a challenging procedure not only from a cosmesis standpoint, but also in terms of ensuring that the patient's brain will be well-protected from direct trauma. Until recently, when a patient's own cranial flap was unavailable, these goals were unattainable. Recent advances in implant computer-aided design and 3-dimensional (3-D) printing are leveraging other advances in regenerative medicine. It is now possible to 3-D-print patient-specific implants from a variety of polymer, ceramic, or metal components. A skull template may be used to design the external shape of an implant that will become well integrated in the skull, while also providing beneficial distribution of mechanical force in the event of trauma. Furthermore, an internal pore geometry can be utilized to facilitate the seeding of banked allograft cells. Implants may be cultured in a bioreactor along with recombinant growth factors to produce implants coated with bone progenitor cells and extracellular matrix that appear to the body as a graft, albeit a tissue-engineered graft. The growth factors would be left behind in the bioreactor and the graft would resorb as new host bone invades the space and is remodeled into strong bone. As we describe in this review, such advancements will lead to optimal replacement of cranial defects that are both patient-specific and regenerative.


Author(s):  
Leanne SOBEL ◽  
Katrina SKELLERN ◽  
Kat PEREIRA

Design thinking and human-centred design is often discussed and utilised by teams and organisations seeking to develop more optimal, effective or innovative solutions for better customer outcomes. In the healthcare sector the opportunity presented by the practice of human-centred design and design thinking in the pursuit of better patient outcomes is a natural alignment. However, healthcare challenges often involve complex problem sets, many stakeholders, large systems and actors that resist change. High-levels of investment and risk aversion results in the status quo of traditional technology-led processes and analytical decision-making dominating product and strategy development. In this case study we present the opportunities, challenges and benefits that including a design-led approach in developing complex healthcare technology can bring. Drawing on interviews with participants and reflections from the project team, we explore and articulate the key learning from using a design-led approach. In particular we discuss how design-led practices that place patients at the heart of technology development facilitated the project team in aligning key stakeholders, unearthing critical system considerations, and identifying product and sector-wide opportunities.


Sign in / Sign up

Export Citation Format

Share Document