Sub-25nm single-metal gate CMOS multi-bridge-channel MOSFET (MBCFET) for high performance and low power application

Author(s):  
Sung-Young Lee ◽  
Eun-Jung Yoon ◽  
Dong-Suk Shin ◽  
Sung-Min Kim ◽  
Sung-Dae Suk ◽  
...  
Author(s):  
C. H. Diaz ◽  
K. Goto ◽  
H.T. Huang ◽  
Yuri Yasuda ◽  
C.P. Tsao ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Sumitra Singar ◽  
N. K. Joshi ◽  
P. K. Ghosh

Dual edge triggered (DET) techniques are most liked choice for the researchers in the field of digital VLSI design because of its high-performance and low-power consumption standard. Dual edge triggered techniques give the similar throughput at half of the clock frequency as compared to the single edge triggered (SET) techniques. Dual edge triggered techniques can reduce the 50% power consumption and increase the total system power savings. The low-power glitch-free novel dual edge triggered flip-flop (DET-FF) design is proposed in this paper. Still now, existing DET-FF designs are constructed by using either C-element circuit or 1P-2N structure or 2P-1N structure, but the proposed novel design is designed by using the combination of C-element circuit and 2P-1N structure. In this design, if any glitch affects one of the structures, then it is nullified by the other structure. To control the input loading, the two circuits are merged to share the transistors connected to the input. In the proposed design, we have used an internal dual feedback structure. The proposed design reduces the delay and power consumption and increases the speed and efficiency of the system.


Author(s):  
Minchul Sung ◽  
Se-Aug Jang ◽  
Hyunjin Lee ◽  
Yun-Hyuck Ji ◽  
Jae-Il Kang ◽  
...  
Keyword(s):  

2020 ◽  
Vol 8 (5) ◽  
pp. 3361-3366

With the existing technology and survey it indicates the increasing the number of transistors count and exploring methodologies leads to innovative design in memories. In general SRAM occupies considerable amount of area and less performance due to leakage power that limits the operation under sub threshold region. The power consumption of the circuit design is primarily depends on the switching activity of the transistor that leads to increasing of leakage current at near or subthreshold operation. Some of the challenges like PVT variations, SEU, SEE, and RDF lead to reduction in performance, increasing the power, BTI, sizing, delay and yield. The research work in this paper primarily describes the challenges with the technology and effects on CMOS & Finfet designs. The second aspect of the paper is to represents the design methodologies of CMOS & FinFET models and its operation. The third part of the paper explains design tradeoff of FinFET SRAM. Final sections present a comparison of high performance, low power at normal and near threshold operation. The Comparisons is made on the basis of process parameters and made a conclusion with circuit functionality, reliability under different technologies. FinFET based SRAM’s are the emerging memory trends by the performance under or near sub-threshold operation with the minimal variation in the leakage current, minimal gate delay is an alternate solution to the traditional CMOS memory designs as showed in the present work.


2020 ◽  
Vol 8 (6) ◽  
pp. 4885-4890

This paper presents the novel way to deal with diminish power utilization in a ternary content addressable memory (TCAM) designed in current innovation. The main aim of this TCAM design is to reduce the dynamic power consumption. In TCAM large amount of the power consumption happens during search operation, so we focussed on this area. Here right now give pragmatic plan of a TCAM which is arranged for low-power applications. Simulation of this design has done in Tanned EDA V.16 tool. For simulations of Low power TCAM designs we used predictive technology model (PTM) 45nm for high-performance applications which include metal gate, high-k and stress impact of CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document