scholarly journals CMOS Realization of VDVTA and OTA Based Fully Electronically Tunable First Order All Pass Filter with Optimum Linearity at Low Supply Voltage ± 0.85 V

2020 ◽  
Vol 11 (04) ◽  
pp. 39-49
Author(s):  
Ghanshyam Singh
2017 ◽  
Vol 26 (06) ◽  
pp. 1750093 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Deepak Agrawal

A new cascadable voltage-input, current-output first-order all-pass filter and its applications in second-order filter and oscillator are presented. The proposed circuit employs a single active element namely extra-X current-controlled current conveyor (EX-CCCII) and only a single grounded capacitor. The circuit exhibits high input and high output impedances, so that the filter can be cascaded without additional buffers. The pole frequency is electronically tunable and the circuit requires no component matching constraints. Effects of nonidealities and parasitics are also discussed. As applications, a second-order transadmittance (TA)-mode all-pass filter and a quadrature oscillator are also realized using the proposed voltage-input, current-output first-order all-pass filter. These examples validate easy cascading feature of the proposed circuit. The validity of the proposed circuit is verified through PSPICE simulations using 0.25[Formula: see text][Formula: see text]m parameters with a supply voltage of [Formula: see text][Formula: see text]V.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Koushick Mathur ◽  
Palaniandavar Venkateswaran ◽  
Rabindranath Nandi

A linear voltage controlled quadrature oscillator implemented from a first-order electronically tunable all-pass filter (ETAF) is presented. The active element is commercially available current feedback amplifier (AD844) in conjunction with the relatively new Multiplication Mode Current Conveyor (MMCC) device. Electronic tunability is obtained by the control node voltage (V) of the MMCC. Effects of the device nonidealities, namely, the parasitic capacitors and the roll-off poles of the port-transfer ratios of the device, are shown to be negligible, even though the usable high-frequency ranges are constrained by these imperfections. Subsequently the filter is looped with an electronically tunable integrator (ETI) to implement the quadrature oscillator (QO). Experimental responses on the voltage tunable phase of the filter and the linear-tuning law of the quadrature oscillator up to 9.9 MHz at low THD are verified by simulation and hardware tests.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350007 ◽  
Author(s):  
LEILA SAFARI ◽  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a novel first-order current-mode (CM) electronically tunable all-pass filter including one grounded capacitor and two dual-output current followers (DO-CFs) is presented. The used DO-CFs are implemented using only 10 MOS transistors granting the proposed CM all-pass filter extremely simple structure. The proposed filter is suitable for integrated circuit (IC) fabrication because it employs only a grounded capacitor and is free from passive component matching conditions. Interestingly the introduced configuration uses minimum number of components compared to other works. It also offers other interesting advantages such as, alleviating all disadvantages associated with the use of resistors, easy cascadability and satisfies all technology requirements such as small sizing, simple realization, low voltage and low power operation. Additionally, the circuit parameters can be easily set by adjusting control voltages. Most favorably, the proposed CM all-pass filter can be simply used as a voltage-mode (VM) all-pass filter with outstanding properties of adjustable gain and tunability. To further show the versatility of the proposed structure a sinusoidal oscillator is also derived from presented CM all-pass filter. Nonideal gain and parasitic impedance effects on developed CM filter are discussed. Finally, simulation results with SPICE program are included to confirm the theory.


2010 ◽  
Vol 19 (02) ◽  
pp. 381-391 ◽  
Author(s):  
BILGIN METIN ◽  
KIRAT PAL

In this paper, a CMOS current controlled current differencing buffered amplifier (C-CDBA) realization is presented. Also, a new first-order all-pass filter that compensates for some C-CDBA non-idealities is given as an application example. The all-pass filter circuit has low output impedance for easy cascadability and it can be made electronically tunable using the proposed C-CDBA implementation. The theoretical results are verified with SPICE simulations.


Author(s):  
MOHAMMAD HADI DANESH ◽  
SASAN NIKSERESHT ◽  
MAHYAR DEHDAST

In this paper a low-power current-mode RMS-to-DC converter is proposed. The proposed converter includes absolute value circuit, squarer/divider circuit, low-pass filter and square root circuit which employ CMOS transistors operating in weak inversion region. The RMS-to-DC converter has low power consumption (<1μW), low supply voltage (0.9V), wide input range (from 50 nA to 500 nA), low relative error (<3 %), and low circuit complexity. Comparing the proposed circuit with two other current-mode circuits shows that the former outperforms the latters in terms of power dissipation, supply voltage, and complexity. Simulation results by HSPICE show high performance of the circuit and confirm the validity of the proposed design technique.


Author(s):  
MOHAMMAD HADI DANESH ◽  
MAHYAR DEHDAST ◽  
ABDOLGHANI AREKHI ◽  
AMIN EMAMI FARD

In this paper a low-power current-mode RMS-to-DC converter is proposed. The converter includes two-quadrant squarer/divider and the first-order low-pass filter cell, both of them use MOS translinear loops. The RMS-to-DC converter has low power consumption (< 0.75μW), low supply voltage (0.8 V), wide input range (from 40 nA to 500 nA), low relative error (< 3 %), and low circuit complexity. Comparing the proposed circuit with two other current-mode circuits shows that the former outperforms the latters in terms of power dissipation, supply voltage, and complexity. Simulation results by HSPICE show high performance of the circuit and confirm the validity of the proposed design technique.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 95 ◽  
Author(s):  
Muhammad Masud ◽  
Abu A’ain ◽  
Iqbal Khan ◽  
Nasir Husin

A novel voltage mode first order active only tuneable all pass filter (AOTAPF) circuit configuration is presented. The AOTAPF has been designed using ±0.7 V, 16 nm carbon nanotube field effect transistor (CNFET) Technology. The circuit uses CNFET based varactor and unity gain inverting amplifier (UGIA). The presented AOTAPF is realized with three N-type CNFETs and without any external passive components. It is to be noted that the realized circuit uses only two CNFETs between its supply-rails and thus, suitable for low-voltage operation. The electronic tunability is achieved by varying the voltage controlled capacitance of the employed CNFET varactor. By altering the varactor tuning voltage, a wide tunable range of pole frequency between 34.2 GHz to 56.9 GHz is achieved. The proposed circuit does not need any matching constraint and is suitable for multi-GHz frequency applications. The presented AOTAPF performance is substantiated with HSPICE simulation program for 16 nm technology-node, using the well-known Stanford CNFET model. AOTAPF simulation results verify the theory for a wide frequency-range.


Sign in / Sign up

Export Citation Format

Share Document