Design of a Neoteric Quad-Band Microstrip Antenna Using an AMC Reflector Characterized With Five Zero-Phases in Reflection Coefficient

Author(s):  
Jia Yang ◽  
Xi Lu ◽  
Ziqi Zhang ◽  
Wei Gan ◽  
Fei Liu ◽  
...  
2017 ◽  
Vol 9 (8) ◽  
pp. 1705-1712
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this study, a dual-layered polarization and frequency reconfigurable microstrip antenna is proposed based on sequential mechanical axial rotation of the circular metal radiator. The antenna can be reconfigured among three different polarized modes, including the linear polarization (LP), left-handed circular polarization and right-handed circular polarization in the band from 4.68 to 4.80 GHz (2.53%). The resonance frequency of the proposed antenna with the same LP mode could also be tuned in the range from 4.70 to 5.03 GHz by mechanical rotation of the breach-truncated circular metal radiator as well as the circular substrate. Furthermore, the polarization characteristic and frequency can be reconfigured, respectively, as the circular radiator is taken an axial rotation with an angle of 360°. The presented antenna in the four different states has been numerically simulated and fabricated for the experimental measurement, the investigated characteristics includes the port reflection coefficient, axial ratio, radiation pattern, gain, and the radiation efficiency. The simulated and test results agreed well with each other. This antenna enriches the novel mechanical reconfigurable method except for the popular electrical approach.


2021 ◽  
Vol 10 (4) ◽  
pp. 2055-2061
Author(s):  
Rasha Mahdi Salih ◽  
Ali Khalid Jassim

This work builds a metamaterial (MTM) superstrate loaded on a patch of microstrip antenna for wireless communications. The MTM superstrate is made up of four G-shaped resonators on FR-4 substrate with a relative permittivity of 4.4 and has a total area of (8×16) mm2, and is higher than the patch. The MTM superstrate increases antenna gain while also raising the input reflection coefficient. When it is 9 mm above the patch, the gain increased from 3.28 dB to 6.02 dB, and when it is 7 mm above the patch, the input reflection coefficient was enhanced from -31.217 dB to -45.8 dB. When the MTM superstrate loaded antenna was compared to the traditional unloaded antenna, it was discovered that metamaterials have a lot of potential for improving antenna performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Pingyuan Zhou ◽  
Zhuo Zhang ◽  
Mang He ◽  
Yihang Hao ◽  
Chuanfang Zhang

A small-size 2×2 broadband circularly polarized microstrip antenna array is proposed in this article. The array has four broadband dual-feed U-slot patch antenna elements with circular polarization, and the sequential feeding technique is used to further enhance the 3 dB axial ratio bandwidth. The lateral size of the fabricated array is as small as 1.33λ0×1.33λ0, and the profile is only 0.04λ0. Measured results show that the overlapped −10 dB reflection coefficient and the 3 dB AR bandwidth is 53%, and the variation of the measured realized gain is less than 1 dB for S-band satellite communications (1.98–2.2 GHz).


Author(s):  
ِAli Khalid Jassim ◽  
Malik Jasim Farhan ◽  
Fadia Noori Hummadi Al-Nuaimy

This research presents a new idea in the use of wireless communication antennas: it uses a multi-layered array of cells called a superstrate multi-layer metasurface (MTM) and is placed in front of a patch of microstrip antenna to absorb surface waves and prevent them from passing through the insulating material, which reduces the permeability of the insulator and thus improves the Antenna properties, The proposed hexagonal cell with resonators is placed on the flame resistant (FR4) substrate, with a relative permittivity of 4.3 and an area (14×14) mm2 . It was tested when the metasurface layer is 4 mm in front of the patch and the distance between the metasurface layers is 2 mm. The optimum distances were calculated by the sweep parameter, and the improved antenna gain and the input reflection coefficient were obtained together. (S11) has been improved from -31.217 to -38.338 dB and, the gain from 3.28 dB to 6.554 dB.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Praphat Arnmanee ◽  
Chuwong Phongcharoenpanich

This research presents a microstrip antenna integrated with the high-impedance surface (HIS) elements and the modified frequency selective surface (FSS) superstrate for 2.4 GHz band applications. The electromagnetic band gap (EBG) structure was utilized in the fabrication of both the HIS and FSS structures. An FR-4 substrate with 120 mm × 120 mm × 0.8 mm in dimension (W × L × T) and a dielectric constant of 4.3 was used in the antenna design. In the antenna development, the HIS elemental structure was mounted onto the antenna substrate around the radiation patch to suppress the surface wave, and the modified FSS superstrate was suspended 20 mm above the radiating patch to improve the directivity. Simulations were carried out to determine the optimal dimensions of the components and the antenna prototype subsequently fabricated and tested. The simulation and measured results were agreeable. The experimental results revealed that the proposed integrated antenna (i.e., the microstrip antenna with the HIS and FSS structures) outperformed the conventional microstrip antenna with regard to reflection coefficient, the radiation pattern, gain, and radiation efficiency. Specifically, the proposed antenna could achieve the measured antenna gain of 10.14 dBi at 2.45 GHz and the reflection coefficient of less than −10 dB and was operable in the 2.39–2.51 GHz frequency range.


2021 ◽  
Vol 328 ◽  
pp. 02010
Author(s):  
Kunto Aji Wibisono ◽  
Riza Alfita ◽  
Alfian Nur Rahman ◽  
Farohaji Kurniawan ◽  
Adi Kurniawan ◽  
...  

This paper presents development of circular polarization 5.5 GHz microstrip antenna E-shaped for synthetic aperture radar Communication. Microstrip antenna designed Truncated E-shaped the centered frequency is 5.5 GHz and bandwidth that is wide 200 Mhz for Synthetic Aperture Radar communication. The proposed antenna on 1.6 mm thickness of FR-4 substrate with the dielectric constant 4.6. The best simulated result can achieve -10dB reflection coefficient bandwidth 600 Mhz, VSWR 1,578, gain 5,67 dbiC and axial ratio 2,947 with left-handed circular polarization. The best measurement result can achieve -10 dB reflection coefficient bandwidth 951 MHz (5.304-6.255), VSWR 1,25, gain 6,17 dBiC with left-handed circular polarization.


2021 ◽  
Author(s):  
Putu Artawan

The objectives of this research include obtaining and verifying the impedance formula of the designed bi-ellipse microstrip antenna and correlating the results obtained through simulation and experimentation. The research also aims to obtain the structure and dimensions that provide optimal characteristics of the designed bi-ellipse microstrip antenna and produce a prototype at S, C and X-Band frequencies. This research produced the structure and dimensions of a bi-ellipse microstrip antenna that provide optimal characteristics of antenna. The characteristics results of the antenna parameters in this research include a 8x2 array, with a bandwidth value of around 100.0 MHz obtained at a working frequency of 7.09GHz (7.04 GHz - 7.14 GHz), with a reflection coefficient value of 0.02, Voltage Standing Wave Ratio (VSWR) of 1.06, return loss of −30.00 dB and a gain of 7.30 dB. For the 8x4 array, a bandwidth value of approximately 210.0 MHz is obtained at a working frequency range of 2.85GHz, which ranges from 2.74GHz - 2.95GHz, with a reflection coefficient value of 0.04, Voltage Standing Wave Ratio (VSWR) of 1.09, return loss of −27.06 dB and a gain of 8.19 dB. The results presented above fulfill the indicators of good antenna characteristics parameters applicable to radar communication systems.


Author(s):  
Deepak Niranjan ◽  
Satyendra Swarnkar

The anticipated antenna is studied and presented. The anticipated antenna is connected to probe feed when designed on IE3D software. The bandwidth, gain, VSWR, and reflection coefficient have been found which is of 77.71% bandwidth, and gain is of 4.1 dBi. This antenna is compact, lightweight, and suitable for portable devices. By using some advanced techniques, the antenna provides dual bandwidth and triple bandwidth. The anticipated antenna provided large bandwidth for and is utilized for broadband applications.


2017 ◽  
Vol 10 (4) ◽  
pp. 453-459
Author(s):  
Haixiong Li ◽  
Bozhang Lan ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a high gain broadband low profile microstrip antenna with the dual-layered substrate and four parasitic metal elements is presented. The proposed microstrip antenna is mainly composed of four parts: four circular parasitic metal patches with dual arced breaches, a rectangular metal patch sandwiched between substrates, a square ground plane, and two-square substrates. The circular parasitic elements are the main radiation structure and determine the characteristics of the proposed antenna are closely related to the parasitic elements. The proposed antenna has been fabricated for experimental measurement. The reflection coefficient, radiation pattern, radiation efficiency, and gain have been studied in detail. The simulated and measured impedance bandwidth is 27.0% (3.30–4.33 GHz), the maximum realized peak gain reaches up to 6.52 dBi at the frequency of 3.65 GHz. The radiation pattern has a single peak which is perpendicular to the surface of the substrate. The proposed antenna is suitable to be applied in the 5G mobile or WiMAX wireless communication. Dual antenna with a pair of parasitic elements has been investigated numerically to explain the principle of the proposed antenna.


Sign in / Sign up

Export Citation Format

Share Document