Development of diffusion barriers for Ti/Al based ohmic contact to AlGaN/GaN heterostructures

Author(s):  
Wojciech Macherzynski ◽  
Bogdan Paszkiewicz
1987 ◽  
Vol 134 (7) ◽  
pp. 1755-1758 ◽  
Author(s):  
Frank C. T. So ◽  
Elzbieta Kolawa ◽  
Jawahar Tandon ◽  
Marc‐A. Nicolet

1985 ◽  
Vol 3 (6) ◽  
pp. 2255-2258 ◽  
Author(s):  
J. Shappirio ◽  
J. Finnegan ◽  
R. Lux ◽  
D. Fox ◽  
J. Kwiatkowski ◽  
...  

1996 ◽  
Vol 449 ◽  
Author(s):  
E. Kamińska ◽  
A. Piotrowska ◽  
M. Guziewicz ◽  
S. Kasjaniuk ◽  
A. Barcz ◽  
...  

ABSTRACTThe formation of n-GaN/Ti ohmic contacts with TiN diffusion barriers has been investigated by electrical measurements, x-ray diffraction and SIMS. It has been shown that the onset of the ohmic behaviour is associated with the thermally induced phase transformation of Ti into TiN at the GaN/Ti interface. It is suggested that the process is accompanied by an increase in the doping level in the semiconductor subcontact region. The presence of a TiN barrier is found to inhibit excessive decomposition of GaN and to confine the reaction between n-GaN and Ti.


Author(s):  
N. Rozhanski ◽  
V. Lifshitz

Thin films of amorphous Ni-Nb alloys are of interest since they can be used as diffusion barriers for integrated circuits on Si. A native SiO2 layer is an effective barrier for Ni diffusion but it deformation during the crystallization of the alloy film lead to the appearence of diffusion fluxes through it and the following formation of silicides. This study concerns the direct evidence of the action of stresses in the process of the crystallization of Ni-Nb films on Si and the structure of forming NiSi2 islands.


Author(s):  
A.K. Rai ◽  
A.K. Petford-Long ◽  
A. Ezis ◽  
D.W. Langer

Considerable amount of work has been done in studying the relationship between the contact resistance and the microstructure of the Au-Ge-Ni based ohmic contacts to n-GaAs. It has been found that the lower contact resistivity is due to the presence of Ge rich and Au free regions (good contact area) in contact with GaAs. Thus in order to obtain an ohmic contact with lower contact resistance one should obtain a uniformly alloyed region of good contact areas almost everywhere. This can possibly be accomplished by utilizing various alloying schemes. In this work microstructural characterization, employing TEM techniques, of the sequentially deposited Au-Ge-Ni based ohmic contact to the MODFET device is presented.The substrate used in the present work consists of 1 μm thick buffer layer of GaAs grown on a semi-insulating GaAs substrate followed by a 25 Å spacer layer of undoped AlGaAs.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


Sign in / Sign up

Export Citation Format

Share Document