Luminescence spectra of active media of lasers on visible and near infrared transitions of inert gases under ion beam excitation

Author(s):  
M.U. Khasenov
2016 ◽  
Vol 34 (4) ◽  
pp. 655-662 ◽  
Author(s):  
M.U. Khasenov

AbstractThe luminescence spectra of noble gases and their binary mixtures were measured using heavy ion beam excitation from a DC-60 accelerator. Spectra were measured in the range of 200–975 nm; the gas spectra were dominated by lines ofp–sandd–patomic transitions; in neon and argon, lines from atomic oxygen, N2, N2+, and OH radical bands were also observed. The ultraviolet region of the spectra was represented by a “third continuum” of noble gases. In krypton, the band of the KrO excimer molecule with a maximum at 557 nm was also observed. The maxima of the heteronuclear ionic molecules bands were located at wavelengths of 329 and 506 nm (Ar–Xe), 491 nm (Kr–Xe), and 642 nm (Ar–Kr). The relative intensities of the 2p–1stransitions of the noble gases atoms were measured and are discussed.


Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.


2017 ◽  
Vol 808 ◽  
pp. 012002 ◽  
Author(s):  
V Egorov ◽  
E Egorov ◽  
M Afanas’ef
Keyword(s):  
Ion Beam ◽  

1997 ◽  
Vol 51 (6) ◽  
pp. 880-882 ◽  
Author(s):  
Brian R. Stallard ◽  
Robert K. Rowe ◽  
Arnold J. Howard ◽  
G. Ronald Hadley ◽  
Gregory A. Vawter ◽  
...  

Miniature, low-cost sensors are in demand for a variety of applications in industry, medicine, and environmental sciences. As a first step in developing such a sensor, we have etched a grating into a GaAs rib waveguide to serve as a wavelength-dispersive element. The device was fabricated with the techniques of metal-organic chemical vapor deposition, electron-beam lithography, optical lithography, and reactive ion-beam etching. While full integration is the eventual goal of this work, for the present, a functional spectrometer was constructed with the addition of a discrete source, sample cell, lenses, and detector. The waveguide spectrometer has a spectral resolution of 7.5 nm and a spectral dispersion of 0.11°/ nm. As presently configured, it functions in the spectral range of 1500 to 1600 nm. A demonstration of the analytical capability of the waveguide spectrometer is presented. The problem posed is the determination of diethanol amine in an ethanol solution (about 10 to 100 g/L). This procedure involves the detection of the first overtone of the NH stretch at 1545 nm in a moderately absorbing solvent background. The standard error of prediction for the determination was 5.4 g/L.


1993 ◽  
Vol 316 ◽  
Author(s):  
BERTILO E. KEMPF

ABSTRACTTitanium metal is sputtered by ion beams using a Kaufman-type ion source with carbondioxide as working gas. Deposition takes place on watercooled substrates of silicon and InP. The films obtained are amorphous; they adhere excellently. SEM-pictures reveal a featureless dense fracture and a smooth surface. Despite a carbon content of 9 at % the films are highly transparent in the visible and near infrared wavelength range. Refractive indices center around 2.15 at values typically found for amorphous TiO2. The electrical properties are characterized by dielectric constant of ε = 26 ± 3, leakage current densities at breakdown of jL = 3.65 . 10-3 A/cm2 and breakdown fields EB > 1 MeV/cm.


1978 ◽  
Vol 19 (2) ◽  
pp. 237-252 ◽  
Author(s):  
J. P. Hauck ◽  
H. Böhmer ◽  
N. Rynn ◽  
Gregory Benford

Ion-cyclotron waves are excited by cesium and potassium ion beams in cesium and potassium Q-machine plasmas. The ion beams are injected along the magnetic field with care to avoid beam transverse velocities. The observed ion-cyclotron mode frequencies are below those driven by electron currents. These resonant instabilities are convective in character with small spatial growth rates ki/kr ≃ 0.05. Plasma ion heating is observed and is consistent with a model in which mode amplitudes are saturated by diffusion effects.


1991 ◽  
Vol 21 (S1) ◽  
pp. S169-S170
Author(s):  
G. Ribitzki ◽  
A. Ulrich ◽  
B. Busch ◽  
W. Kr�tz ◽  
R. Miller ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wojciech A. Pisarski ◽  
Joanna Pisarska ◽  
Marta Kuwik ◽  
Marcin Kochanowicz ◽  
Jacek Żmojda ◽  
...  

AbstractFluoroindate glasses co-doped with Pr3+/Er3+ ions were synthesized and their near-infrared luminescence properties have been examined under selective excitation wavelengths. For the Pr3+/Er3+ co-doped glass samples several radiative and nonradiative relaxation channels and their mechanisms are proposed under direct excitation of Pr3+ and/or Er3+. The energy transfer processes between Pr3+ and Er3+ ions in fluoroindate glasses were identified. In particular, broadband near-infrared luminescence (FWHM = 278 nm) associated to the 1G4 → 3H5 (Pr3+), 1D2 → 1G4 (Pr3+) and 4I13/2 → 4I15/2 (Er3+) transitions of rare earth ions in fluoroindate glass is successfully observed under direct excitation at 483 nm. Near-infrared luminescence spectra and their decays for glass samples co-doped with Pr3+/Er3+ are compared to the experimental results obtained for fluoroindate glasses singly doped with rare earth ions.


2020 ◽  
Vol 1004 ◽  
pp. 355-360
Author(s):  
Shin Ichiro Sato ◽  
Takuma Narahara ◽  
Shinobu Onoda ◽  
Yuichi Yamazaki ◽  
Yasuto Hijikata ◽  
...  

This paper reports optical propertites of negatively charged NCVSi- centers in silicon carbide (a nitrogen substituting for a carbon atom adjacent to a silicon vacancy) whose emission wavlength is 1100-1500 nm at room temperature. High-purity semi-insulating (HPSI) 4H-SiCs are implanted with high energy N ion beams and subsequently thermally annealed to form NCVSi centers. We investigated a wide range of N ion implantation dose using a micro ion beam implantation technique and observed the photoluminescence intensity from the SiC-NV centers. We show that under conditions of heavy implantation, the excitation laser power excites residual defects and their fluorescences intereferes with the emission from the NCVSi- centers. These results allow us to clarify the requirements to optically detect isolated single NCVSi- centers at lightly implanted conditions.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 473 ◽  
Author(s):  
Ming-Jiang Dai ◽  
Song-Sheng Lin ◽  
Qian Shi ◽  
Fen Liu ◽  
Wan-Xia Wang ◽  
...  

Cu2O thin film has been widely studied due to its intrinsic p-type conductivity. It can be used as p-type transparent conductive electrode or hole transport layer in various potential applications. However, its intrinsic p-type conductivity is very limited, which needs to be optimized by introducing acceptor defects. In this work, the electrical properties of the Cu2O films was improved through introducing interstitial oxygen in the films those were deposited via direct current sputtering assisted by oxygen ion beam. The results show that with oxygen ion beam current increase, the carrier concentration effectively improves. However, with more interstitial oxygen introduced, the film’s crystallinity significantly reduces, as well as the carrier mobility decreases. Meanwhile, all of the Cu2O films present moderate transmittance in the visible region (400–800 nm), but ideal transmittance in the near infrared (NIR) light region (800–2500 nm). When compared with the strong reflection of the n-type transparent conductive film to the near infrared light, the Cu2O film is transparent conductive in NIR region, which expands its application in the fabrication of NIR electrical devices.


Sign in / Sign up

Export Citation Format

Share Document