Vibration control experiments on a piezoelectric laminate plate using spatial feedforward control approach

Author(s):  
Y.K. Lee ◽  
D. Halim
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 420
Author(s):  
Phong B. Dao

Multiagent control system (MACS) has become a promising solution for solving complex control problems. Using the advantages of MACS-based design approaches, a novel solution for advanced control of mechatronic systems has been developed in this paper. The study has aimed at integrating learning control into MACS. Specifically, learning feedforward control (LFFC) is implemented as a pattern for incorporation in MACS. The major novelty of this work is that the feedback control part is realized in a real-time periodic MACS, while the LFFC algorithm is done on-line, asynchronously, and in a separate non-real-time aperiodic MACS. As a result, a MACS-based LFFC design method has been developed. A second-order B-spline neural network (BSN) is used as a function approximator for LFFC whose input-output mapping can be adapted during control and is intended to become equal to the inverse model of the plant. To provide real-time features for the MACS-based LFFC system, the open robot control software (OROCOS) has been employed as development and runtime environment. A case study using a simulated linear motor in the presence of nonlinear cogging and friction force as well as mass variations is used to illustrate the proposed method. A MACS-based LFFC system has been designed and implemented for the simulated plant. The system consists of a setpoint generator, a feedback controller, and a time-index LFFC that can learn on-line. Simulation results have demonstrated the applicability of the design method.


Author(s):  
Sicheng Yi ◽  
Qingze Zou

In this paper, we propose a finite-impulse-response (FIR)-based feedforward control approach to mitigate the acoustic-caused probe vibration during atomic force microscope (AFM) imaging. Compensation for the extraneous probe vibration is needed to avoid the adverse effects of environmental disturbances such as acoustic noise on AFM imaging, nanomechanical characterization, and nanomanipulation. Particularly, residual noise still exists even though conventional passive noise cancellation apparatus has been employed. The proposed technique exploits a data-driven approach to capture both the noise propagation dynamics and the noise cancellation dynamics in the controller design, and is illustrated through the experimental implementation in AFM imaging application.


Author(s):  
Yan-Jun Liang ◽  
You-Jun Lu ◽  
De-Xin Gao ◽  
Zhong-Sheng Wang

AbstractTechnique of approximate optimal vibration control and simulation for vehicle active suspension systems are developed. Considered the nonlinear damping of springs, mechanical model and a nonlinear dynamic system for a class of tracked vehicle suspension vibration control are established and the corresponding system of state space form is described. To prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an approximate optimal vibration controller is designed, and an algorithm is presented for the vibration controller. Numerical simulation results illustrate the effectiveness of the proposed technique.


Author(s):  
Hidefumi Hiramatsu ◽  
Daijiro Fuji ◽  
Kazuto Seto ◽  
Toru Watanabe

Abstract This paper deals with a design procedure of control system for a three-dimensional flexible shaking table. The shaking table should be less weighted so that actuators require less control forces and higher fidelity to control commands. However, as the weight of shaking table is reduced, the natural frequencies of vibration modes of the table appear on operating frequency region. Such vibration modes get into problem that may cause spillover instability. So, the research purpose is to control such vibration and motion by using the modeling method presented by Seto [1]. Utilizing the model, state equation system model including integrator is composed and feedback controller is designed by using LQI control law. As the system model both includes the multi-degree-of -freedom-structure model and integrator, the designed controller achieves simultaneous motion and vibration control. Computer simulation and control experiments are carried out and the effectiveness of the presented procedure is investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kazuhiko Hiramoto

A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with the semiactive control device. A design method to determine the active control input and the command signal to drive the semiactive control device based on the one-step prediction of the control output is proposed. A simulation example of a control system design for a benchmark building is presented to show the effectiveness of the proposed control framework.


1994 ◽  
Vol 1 (5) ◽  
pp. 473-484 ◽  
Author(s):  
Gerald T. Montague ◽  
Albert F. Kascak ◽  
Alan Palazzolo ◽  
Daniel Manchala ◽  
Erwin Thomas

This article presents a novel means for suppressing gear mesh related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed forward controller. Test results are presented and show up to a 70% reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.


Sign in / Sign up

Export Citation Format

Share Document