Effect of titanium addition on mechanical properties of hydroxyapatite - Titanium nanocomposite

Author(s):  
Ainaa Zafirah Omar Arawi ◽  
Rosmamuhamadani Ramli ◽  
Mahesh Kumar Talari ◽  
Minaketan Tripathy
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shimaa El-Hadad ◽  
Mervat Ibrahim ◽  
Mohamed Mourad

High-entropy alloys (HEAs) are multiprincipal element alloys with controllable properties. Studying the mechanical properties of these alloys and relating them to their microstructures is of interest. In the current investigation, Fe31Mn28 Ni15Al24.5Tix high-entropy alloys with Ti content (0–3 wt.%) were prepared by casting in an induction furnace. Different heat treatments were applied, and the microstructure and hardness of the cast samples were studied. It was observed that addition of up to 3.0 wt.% Ti significantly increases the hardness of the alloy from 300 to 500 (Hv) by the combined effect of solid solution strengthening and via decreasing lamellar spacing. Heat treatment at 900°C for 10 h enhanced the hardness at lower Ti percentages (0.0–0.8 wt.%) by decreasing the lamellar spacing, while no change was observed at higher Ti content. It was also observed that extending the treatment time to 20 h affected negatively the hardness of the alloy. Concluding, HEAs can achieve high hardness using low-cost principle elements with minor alloying additives compared to the other traditional alloys.


Author(s):  
Won June Choi ◽  
Seung Yeong Lee ◽  
Chun Woong Park ◽  
Jung Hyo Park ◽  
Jong Min Byun ◽  
...  

2017 ◽  
Vol 62 (4) ◽  
pp. 2183-2187 ◽  
Author(s):  
D. Kopyciński ◽  
D. Siekaniec ◽  
A. Szczęsny ◽  
E. Guzik ◽  
A. Nowak

AbstractThe results of studies of the effect of different amounts of the Fe-Ti inoculant on structure and selected mechanical properties of High Chromium Cast Iron (conventionally abbreviated as HCCI) are presented. The main purpose of the inoculation is structure refinement and hence the improvement of casting properties. Generally considered a strong carbide-forming element, titanium is an effective inoculant for the high chromium cast iron. However, there is an optimal amount of titanium addition beyond which the mechanical properties begin to deteriorate. The studies enabled determining the amount of Fe-Ti inoculant optimal for the cast iron of a given chemical composition.


2013 ◽  
Vol 13 (2) ◽  
pp. 25-28 ◽  
Author(s):  
M. Górny ◽  
M. Kawalec

Abstract In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI). The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM). Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.


2013 ◽  
Vol 765 ◽  
pp. 23-27 ◽  
Author(s):  
Shou Xun Ji ◽  
Douglas Watson ◽  
Yun Wang ◽  
Mark White ◽  
Zhong Yun Fan

Titanium significantly improves the mechanical properties, especially the ductility of a diecast Al5Mg1.5Si0.6Mn alloy. When a titanium addition of 0.20 wt.% is made the elongation in the as-cast condition is increased from 11% to 18% and the yield strength is increased from 136 MPa to 157 MPa and the ultimate tensile strength from 296 MPa to 308 MPa. The improved mechanical performance can be attributed to the reduced tendency for hot tearing due to Ti addition.


Sign in / Sign up

Export Citation Format

Share Document