Selective Area Deposition of Vanadium Dioxide Films by MOCVD

Author(s):  
Evgeniy K. Bagochus ◽  
Vadim N. Kichay ◽  
Victor Ya. Prinz
1989 ◽  
Vol 161 ◽  
Author(s):  
D.L. Dreifus ◽  
Y. Lansari ◽  
J.W. Han ◽  
S. Hwang ◽  
J.W. Cook ◽  
...  

ABSTRACTII-VI semiconductor surface passivants, insulators, and epitaxial films have been deposited onto selective surface areas by employing a new masking and lift-off technique. The II-VI layers were grown by either conventional or photoassisted molecular beam epitaxy (MBE). CdTe has been selectively deposited onto HgCdTe epitaxial layers as a surface passivant. Selective-area deposition of ZnS has been used in metal-insulator-semiconductor (MIS) structures. Low resistance ohmic contacts to p-type CdTe:As have also been realized through the use of selectively-placed thin films of the semi-metal HgTe followed by a thermal evaporation of In. Epitaxial layers of HgTe, HgCdTe, and HgTe-CdTe superlattices have also been grown in selective areas on CdZnTe substrates, exhibiting specular morphologies and double-crystal x-ray diffraction rocking curves (DCXD) with full widths at half maximum (FWHMs) as narrow as 140 arcseconds.


1992 ◽  
Vol 282 ◽  
Author(s):  
Seong-Don Hwang ◽  
S. S. Kher ◽  
J. T. Spencer ◽  
P. A. Dowben

ABSTRACTIt has been demonstrated that copper can be selectively deposited on a variety of substrates including Teflon (polytetrafluroethylene or PTFE), Kapton (polyimide resin), silicon and gallium arsnide from solution by photo-assisted initiated deposition. A copper containing solution was prepared from a mixture of copper(I) chloride (Cu2Ci2) and decaborane (B10H14) in diethyl ether and/or THF (tetrahydrofuran). The copper films were fabricated by ultraviolet photolytic decomposition of copper chloride and polyhedral borane clusters. This liquid phase deposition has a gas-phase cluster analog that also results in copper deposition via pyrolysis. The approach of depositing metal thin films selectively by pholysis from solution is a novel and an underutilized approach to selective area deposition.


2019 ◽  
Vol 19 (2) ◽  
pp. 672-677 ◽  
Author(s):  
Raju Ahmed ◽  
Anwar Siddique ◽  
Jonathan Anderson ◽  
Chris Engdahl ◽  
Mark Holtz ◽  
...  

1983 ◽  
Vol 29 ◽  
Author(s):  
S. J. C. Irvine ◽  
J. B. Mullin ◽  
D. J. Robbins ◽  
J. L. Glasper

ABSTRACTA preliminary study has been made of the UV photolysis of metal-organic compounds of Hg, Cd and Te which could be used for low-temperature, selective-area deposition of cadmium mercury telluride (CMT). High-resolution UV absorption spectra have been measured for dimethylcadmium (CdMe2), dimethylmercury (HgMe2) and diethyltelluride (TeEt2). Possible modes for photodissociation are discussed in the light of these results. The photodissociation of these alkyls was attempted in a hydrogen stream at atmospheric pressure using a mercury-xenon lamp, deposition being being onto a silica reaction tube. Yields of Cd, Hg and Te were measured under different deposition conditions to determine the dependence on UV intensity, alkyl concentration and flow velocity.


1992 ◽  
Vol 283 ◽  
Author(s):  
Gregory N. Parsons ◽  
John J. Boland ◽  
James C. Tsang

ABSTRACTWe discuss a process for selective area deposition of microcrystalline silicon (μc-Si) using plasma enhanced chemical vapor deposition at low substrate temperature (<300°C) using time modulated silane flow in a hydrogen plasma. We discuss selectivity and deposition rate on a variety of substrates with process conditions important for manufacturing applications, and show a distinct microstructural evolution in the initial nucleation layers using Raman spectroscopy that correlates with the transition from selective to non-selective growth. Atomic hydrogen discriminates between different degrees of bond strain in the nucleii formed on different substrates, and can increase the crystallinity fraction in films deposited at low temperatures by modifying the kinetics of bulk-like bond formation.


1995 ◽  
Vol 67 (24) ◽  
pp. 3557-3559 ◽  
Author(s):  
S. Mirzakuchaki ◽  
M. Hajsaid ◽  
H. Golestanian ◽  
R. Roychoudhury ◽  
E. J. Charlson ◽  
...  

1993 ◽  
Vol 334 ◽  
Author(s):  
M. A. Mendicino ◽  
R. P. Southwell ◽  
E. G. Seebauer

Recently, TiSi2 has been the object of considerable study because of its low resistivity among the transition metal silicides and its compatibility with existing ULSI technology [1,2]. Film growth by CVD offers the potential for selective area deposition and high production throughput. However, selective CVD of TiSi2 from gas phase SiH4 and TiCl4 is usually accompanied by a competing reaction which consumes intolerable amounts of the Si substrate [3,4]. Controlling this consumption is crucial in TiSi2 growth; however, no quantitative correlation exists between silicon consumption and growth conditions or film thickness. Additionally, the reaction mechanism for TiSi2 growth is poorly understood, and some disagreement even exists about the reaction stoichiometry [5,6]. The combined CVD/UHV approach we have developed fills many gaps in the current understanding of TiSi2 CVD.


1991 ◽  
Vol 236 ◽  
Author(s):  
F. Keith Perkins ◽  
M. Onellion ◽  
Sunwoo Lee ◽  
P.A. Dowben

AbstractThe scanning tunnelling microscope (STM) can be used to selectively deposit material from a gaseous precursor compound. Ultrasmall (less than a 100 nm across) spatial dimensions for selective area deposition may be achieved by this means. In this paper we outline a scheme forselecting and designing main group cluster compounds and organometallics for this type of selective area deposition using nido-decaborane(14) as an example.


1999 ◽  
Vol 558 ◽  
Author(s):  
Z.C. Zhong ◽  
V. Holmes ◽  
P.A. Dowben ◽  
D.J. Sellmyer

ABSTRACTWe have developed a novel technique for the selective area deposition of rare earth hexaborides: laser-induced solution deposition (LISD). This technique is both simple and efficient and combines many advantages of both chemical vapor deposition and electrolytic deposition. The results of LISD deposition show that the polycrystalline thin films of rare earth hexaborides and sub-borides such as MB6, MB4, and MB2 (M = Gd, La) are formed through the light initiated chemical reaction of nido-decaborane (B10H14) and rare earth chloride in solution. These films grow with a strong texture growth axis and morphology that is dependent both on the selection of solvents and laser wavelengths and power used in LISD.


Sign in / Sign up

Export Citation Format

Share Document