Integration of MEMS/Sensors in Fan-Out wafer-level packaging technology based system-in-package (WLSiP)

Author(s):  
Andre Cardoso ◽  
Steffen Kroehnert ◽  
Raquel Pinto ◽  
Elisabete Fernandes ◽  
Isabel Barros
Author(s):  
Steffen Kroehnert ◽  
André Cardoso ◽  
Steffen Kroehnert ◽  
Raquel Pinto ◽  
Elisabete Fernandes ◽  
...  

The Internet of Things/ Everything (IoT/E) will require billions of single or multiple MEMS/Sensors integrated in modules together with other functional building blocks like processor, memory, connectivity, built-in security, power management, energy harvesting, and battery charging. The success of IoT/E will also depend on the selection of the right Packaging Technology. The winner will be the one achieving the following key targets: best electrical and thermal system performance, miniaturization by dense system integration, effective MEMS/Sensors fusion into the systems, manufacturability in high volume at low cost. MEMS/Sensors packaging in low cost molded packages on large manufacturing formats has always been a challenge, whether because of the parameter drift of the sensors caused by the packaging itself or, as in many cases, the molded packaging technology is not compatible to the way MEMS/Sensors are working. Wafer-Level Packaging (WLP), namely Fan-Out WLP (FOWLP) technologies such as eWLB, WLFO, RCP, M-Series and InFO are showing good potential to meet those requirements and offer the envisioned system solutions. FOWLP will grow with CAGR between 50–80% until 2020, forecasted by the leading market research companies in this field. System integration solutions (WLSiP and WL3D) will dominate FOWLP volumes in the future compared to current single die FOWLP packages for mobile communication. The base technology is available and has proven maturity in high volume production, but for dense system integration of MEMS/Sensors, additional advanced building blocks need to be developed and qualified to extend the technology platform. The status and most recent developments on NANIUM's WLFO technology, which is based on Infineon's/Intel's eWLB technology, aiming to overcome the current limits for MEMS/Sensors integration, will be presented in this paper. This will cover the processing of Keep-Out Zones (KOZ) for MEMS/Sensors access to environment in molded wafer-level packages, mold stress relief on dies for MEMS/Sensors die decoupling from internal package stress, thin-film shielding using PVD seed layer as functional layer, and heterogeneous dielectrics stacking, in which different dielectric materials fulfill different functions in the package, including the ability to integrate Microfluidic.


2012 ◽  
Vol 132 (8) ◽  
pp. 246-253 ◽  
Author(s):  
Mamoru Mohri ◽  
Masayoshi Esashi ◽  
Shuji Tanaka

2013 ◽  
Vol 21 (1) ◽  
pp. 215-219 ◽  
Author(s):  
M. Han ◽  
S. F. Wang ◽  
G. W. Xu ◽  
Le Luo

Author(s):  
Kavin Senthil Murugesan ◽  
Mykola Chernobryvko ◽  
Sherko Zinal ◽  
Marco Rossi ◽  
Ivan Ndip ◽  
...  

2017 ◽  
Vol 2017 (1) ◽  
pp. 000325-000330 ◽  
Author(s):  
Wei Zhao ◽  
Mark Nakamoto ◽  
Karthikeyan Dhandapani ◽  
Brian Henderson ◽  
Ron Lindley ◽  
...  

Abstract Electrical Chip Board Interaction (e-CBI) has emerged as a new risk in chip design as silicon die can directly interact with printed circuit board (PCB) in substrate-less wafer level packaging technology. To assess this risk Qualcomm Technologies, Inc. has converted an existing test chip to wafer level packaging technology. Both the measured data and simulation results show that e-CBI risk is significant and must be carefully managed.


Author(s):  
Marion Volpert ◽  
Abdenacer Aitmani ◽  
Adrien Gasse ◽  
Brigitte Soulier ◽  
Patrick Peray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document