A bandwidth balance routing approach for saving network capacity in static elastic optical networks

Author(s):  
Jorge Bermudez Cedeno ◽  
Reinaldo Vallejos ◽  
Nicolas Jara
2018 ◽  
Vol 10 (12) ◽  
pp. 118 ◽  
Author(s):  
Jinlong Wei ◽  
Ji Zhou ◽  
Elias Giacoumidis ◽  
Paul Haigh ◽  
Jianming Tang

To address the continuous growth in high-speed ubiquitous access required by residential users and enterprises, Telecommunication operators must upgrade their networks to higher data rates. For optical fiber access networks that directly connect end users to metro/regional network, capacity upgrade must be done in a cost- and energy-efficient manner. 40 Gb/s is the possible lane rate for the next generation passive optical networks (NG-PONs). Ideally, existing 10 G PON components could be reused to support 40 Gb/s lane-rate NG-PON transceiver, which requires efficient modulation format and digital signal processing (DSP) to alleviate the bandwidth limitation and fiber dispersion. The major contribution of this work is to offer insight performance comparisons of 40 Gb/s lane rate electrical three level Duobinary, optical Duobinary, and four-level pulse amplitude modulation (PAM-4) for incorporating low complex DSPs, including linear and nonlinear Volterra equalization, as well as maximum likelihood sequence estimation. Detailed analysis and comparison of the complexity of various DSP algorithms are performed. Transceiver bandwidth optimization is also undertaken. The results show that the choices of proper modulation format and DSP configuration depend on the transmission distances of interest.


2020 ◽  
Vol 8 (5) ◽  
pp. 4245-4249

In the last few years, internet traffic increases continuously due to the more use of live streaming and social sites. To accommodate such high traffic demand the more bandwidth is required. The elastic optical network (EON) is a promising solution for the capacity expansion that can meet the future bandwidth requirement. The EON can provide a higher bit rate. In this paper we purposed a recovery strategy for failure in EON. Our purposed strategy shows the more acceptance rate for randomly generated source (s)-destination (d) requests. Here we considered two topologies viz. COST239 and NSFNET. Then evaluate their performance for Recovery Time, bandwidth blocking probability (BBP) and network capacity utilization (NCU), in which our purposed scheme provides lesser BBP and lower NCU for both topologies and low recovery time than shared path protection (SPP and dedicated path protection (DPP).


Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 64 ◽  
Author(s):  
Emanuele Virgillito ◽  
Alessio Ferrari ◽  
Andrea D’Amico ◽  
Vittorio Curri

In order to cope with the increase of the final user traffic, operators and vendors are pushing towards physical layer aware networking as a way to maximize the network capacity. To this aim, optical networks are becoming more and more open by exposing physical parameters enabling fast and reliable estimation of the lightpath quality of transmission. This comes in handy not only from the point of view of the planning and managing of the optical paths but also on a more general picture of the whole optical network performance. In this work, the Statistical Network Assessment Process (SNAP) is presented. SNAP is an algorithm allowing for estimating different network metrics such as blocking probability or link saturation, by generating traffic requests on a graph abstraction of the physical layer. Being aware of the physical layer parameters and transceiver technologies enables assessing their impact on high level network figures of merit. Together with a detailed description of the algorithm, we present a comprehensive review of several results on the networking impact of multirate transceivers, flex-grid spectral allocation as a means to finely exploit lightpath capacity and of different Space Division Multiplexing (SDM) solutions.


Author(s):  
Sridhar Iyer ◽  
Shree Prakash Singh

The required upgradation of the network capacity of the single-mode fiber which is constrained by the non-linear Shannon’s limit, and the capacity provisioning needed by the future diverse Internet traffic can be resolved by the adoption of the Space Division Multiplexing (SDM) based Elastic Optical Networks (EONs) (SDM-b-EONs). In the current work, we focus on the performance analysis of a SDM-b-EON in which translucent lightpaths are routed through the spectral super-channels over the spatial single-mode fiber(s) bundle(s) links. In regard to regeneration, we investigate three scenarios which differ in their regeneration variability level in addition to the adjustment of modulation formats according to transmission route characteristics. We conduct extensive simulations considering an online traffic case and two realistic network topologies with different numbers of (i) fibers in every link, and (ii) transceivers available within SDM-b-EON. The obtained results demonstrate that when regeneration is conducted with complete flexibility and simultaneously the modulation format conversion is also permitted at every SDM-b-EON node both, largest traffic volume amounts can be provisioned, and significant SDM-b-EON performance scaling can be obtained with a corresponding increase in the utilized fibers amount.


Author(s):  
Zhenxing Wang ◽  
Mable P. Fok ◽  
Paul R. Prucnal

Data security at the physical layer of optical networks, or optical layer security, has received considerable research attention due to the rapid growth of optical network capacity [1]. Among various optical layer approaches, optical codedivision multiple access (OCDMA) systems are considered to be promising because of the physical encoding and decoding processes comprising these systems. Generally, physical encoding is an important concept in the field of optical layer security, which implements encoding to the transmitted optical signals, and protects the transmitted data from attack. In this paper, we provide an overview of various OCDMA systems, and discuss the impact of different physical encoding methods on OCDMA systems, in terms of security assurance. Furthermore, we introduce the application of physical encoding to optical steganography and optical transmission with wireless CDMA for security improvement.


2021 ◽  
pp. 537-574
Author(s):  
Debasish Datta

In WDM networks using a fixed frequency grid, transmission rates can vary for different connections, leading to inefficient bandwidth utilization in optical fibers with lower-rate connections using wide frequency slots. In elastic optical networks (EONs), the frequency grid is made flexible, thereby improving the effective network capacity. A flexible frequency grid consists of smaller frequency slots, and a transmitting node can use multiple slots using suitable modulation techniques, such as optical OFDM, Nyquist-WDM and optical arbitrary waveform generation (OAWG). However, this requires bandwidth-variable transceivers (BVTs) and other devices to set up variable-rate connections. First we discuss the design challenges in EONs and describe the evolving technologies for the network elements. Then we present some offline (LP-based and heuristic) design methodologies for EONs to carry out routing and spectral allocation (RSA) for the required connections. Finally, we present some online fragmentation-aware RSA schemes for the operational EONs. (146 words)


Photonics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Mamun Abu-Tair ◽  
Philip Perry ◽  
Philip Morrow ◽  
Sally McClean ◽  
Bryan Scotney ◽  
...  

A number of new architectures for data centre networks employing reconfigurable, SDN controlled, all-optical networks have been reported in recent years. In most cases, additional capacity was added to the system which unsurprisingly improved performance. In this study, a generalised network model that emulates the behaviour of these types of network was developed but where the total capacity is maintained constant so that system behaviour can be understood. An extensive emulated study is presented which indicates that the reconfiguration of such a network can have a detrimental impact on Transmission Control Protocol (TCP) congestion control mechanisms that can degrade the performance of the system. A number of simple scheduling mechanisms were investigated and the results show that an on-demand scheduling mechanism could deliver a throughput increase of more than ∼50% without any increase in total installed network capacity. These results, therefore, indicate the need to link the network resource management with new datacentre network architectures.


In this paper, we proposed a link based fast connection recovery strategy. A backup path either reserved in advance or searched dynamically after the failure occurred in the network. Both these recovery strategy required large backup capacity. We analyse three network parameters such as recovery time (RT), bandwidth blocking probability (BBP), and network capacity utilization ratio (NCU) for randomly generated source to destination request for three topologies that is COST239, ARPANET and NSFNET and compare the results for shared link protection (SLP), dedicated link protection (DLP), and our proposed link protection (PLP) scheme. Our proposed scheme shows the minimum RT compared to other two strategies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Deepak Garg ◽  
Abhimanyu Nain

Abstract Next generation wireless networks are the need of the hour with reliable, high bandwidth, low Bit Error Rate (BER), high Signal to Noise Ratio (SNR), large network capacity, etc. for a paradigm shift to all optical networks from the prevailing conventional electro optic network due to the various benefits of optical links such as enormous bandwidth and extremely low losses. This paper presents a primitive overview of the foregoing technologies and then move on to encapsulating the contemporary techniques to enhance the system performance. For this, preceding limitation and their respective improvement measures from literature of fiber communication and its integration with the next generation networks mainly based upon Radio over Fiber (RoF), Fiber to the Home (FTTH) and Free Space Optics (FSO) are discussed. The advancement in the domain of optical wireless communication utilizing various methodologies is summarized. Finally, we conclude by incorporating various cost reduction methodologies developed which may further be explored to make next generation networks more promising.


Sign in / Sign up

Export Citation Format

Share Document