Effect of Disc Parameters on the Braking Torque of Disc Type Magnetorheological Brake

Author(s):  
Krishna Karthik Peri ◽  
Seung-Bok Choi ◽  
Jagadeesha T
Keyword(s):  
2006 ◽  
Vol 34 (1) ◽  
pp. 38-63 ◽  
Author(s):  
C. Lee

Abstract A tire slips circumferentially on the rim when subjected to a driving or braking torque greater than the maximum tire-rim frictional torque. The balance of the tire-rim assembly achieved with weight attachment at certain circumferential locations in tire mounting is then lost, and vibration or adverse effects on handling may result when the tire is rolled. Bead fitment refers to the fit between a tire and its rim, and in particular, to whether a gap exists between the two. Rim slip resistance, or the maximum tire-rim frictional torque, is the integral of the product of contact pressure, friction coefficient, and the distance to the wheel center over the entire tire-rim interface. Analytical solutions and finite element analyses were used to study the dependence of the contact pressure distribution on tire design and operating attributes such as mold ring profile, bead bundle construction and diameter, and inflation pressure, etc. The tire-rim contact pressure distribution consists of two parts. The pressure on the ledge and the flange, respectively, comes primarily from tire-rim interference and inflation. Relative contributions of the two to the total rim slip resistance vary with tire types, depending on the magnitudes of ledge interference and inflation pressure. Based on the analyses, general guidelines are established for bead design modification to improve rim slip resistance and mountability, and to reduce the sensitivity to manufacturing variability. An iterative design and analysis procedure is also developed to improve bead fitment.


Author(s):  
Lingying Zhao ◽  
Min Ye ◽  
Xinxin Xu

To address the comfort of an electric vehicle, a coupling mechanism between mechanical friction braking and electric regenerative braking was studied. A cooperative braking system model was established, and comprehensive simulations and system optimizations were carried out. The performance of the cooperative braking system was analyzed. The distribution of the braking force was optimized by an intelligent method, and the distribution of a braking force logic diagram based on comfort was proposed. Using an intelligent algorithm, the braking force was distributed between the two braking systems and between the driving and driven axles. The experiment based on comfort was carried out. The results show that comfort after optimization is improved by 76.29% compared with that before optimization by comparing RMS value in the time domain. The reason is that the braking force distribution strategy based on the optimization takes into account the driver’s braking demand, the maximum braking torque of the motor, and the requirements of vehicle comfort, and makes full use of the braking torque of the motor. The error between simulation results and experimental results is 5.13%, which indicates that the braking force’s distribution strategy is feasible.


2011 ◽  
Vol 179-180 ◽  
pp. 1453-1458
Author(s):  
Jun Yan

Based on CFD numeric simulation for hydraulic retarder under full-filled condition, the pressure distribution functions of the rotor blades surfaces are approached by coordinate transformation and surface fitting. Through the APDL program, loads which involved not only centrifugal force but also flow pressure are loaded on the FEA model according to the approximating pressure functions. The FEA model is solved and the blades strength is analyzed more accurately. Noted moment and speed, that is respectively 4000 N • m and 1343rpm, is determined under the promise of blade strength, and controlling strategy is made that constant braking torque shoud be carried out when speed is higher than noted value .


2016 ◽  
Vol 28 (12) ◽  
pp. 1614-1626 ◽  
Author(s):  
Wan-Li Song ◽  
Dong-Heng Li ◽  
Yan Tao ◽  
Na Wang ◽  
Shi-Chao Xiu

The aim of this work is to investigate the effect of the small magnetorheological fluid gap on the braking performance of the magnetorheological brake. In this article, theoretical analyses of the output torque are given first, and then the operating principle and design details of the magnetorheological brake whose magnetorheological fluid gap can be altered are presented and discussed. Next, the magnetic circuit of the proposed magnetorheological brake is conducted and further followed by a magnetostatic simulation of the magnetorheological brakes with different sizes of fluid gap. A prototype of the magnetorheological brake is fabricated and a series of tests are carried out to evaluate the braking performance and torque stability, as well as the verification of the simulation results. Experimental results show that the braking torque increases with the increase in the current, and the difference for the impact of the fluid gap on braking performance is huge under different currents. The rules, which the experimental results show, have an important significance on both the improvement of structure design for magnetorheological brake and the investigation of the wear property under different fluid gaps.


2010 ◽  
Vol 426-427 ◽  
pp. 299-302
Author(s):  
Fa Ye Zang

Based on deeply analyzing the working principles and energy-saving theory of loader secondary regulating transmission system, regenerating the transmission system’s inertial energy by controlling constant torque was put forward. Considering large changes of the parameters of the transmission system and its non-linearity, a fuzzy control was adopted to control the transmission system, and the mathematical model of the system was established, then the simulations of the performance of the transmission system has been conducted. The conclusion was made that the inertial energy can be reclaimed and reused in the system by the application of the secondary regulation technology, and braking by controlling constant torque is stable, it can ensure the security of braking at high speed and also permits changing the efficiency of recovery by changing the braking torque. The system’s power has been reduced and energy saving has been achieved.


2021 ◽  
Author(s):  
Xiuqi Chen ◽  
Wei Wei ◽  
Tangzhu Liu ◽  
Wenhao Xie ◽  
Yifei Li ◽  
...  

Abstract AIris, a flat circular membrane in the middle layer of human eyeball, is controlled by sympathetic nerve and can automatically adjust pupil size according to light intensity to limit the amount of light entering the eyeball. This paper attempts to introduce the artificial iris diameter changing mechanism into hydrodynamic machinery, that is, to control the hydrodynamic retarder without filling fluid by changing the inner diameter of iris and changing the flow path of retarder. Through the decomposition and reconstruction of the intrinsic flow field, the flow field characteristics of the iris retarder are deeply understood, and the fast prediction of the braking torque is realized. At the same time, the close-loop controller is designed to control the iris opening that realizing the adaptive adjustment of the output torque of the retarder, thus overcoming the difficulty on-line observation of actual filling rate of oil problem and the inaccurate tracking of braking torque on traditional hydrodynamic retarder with filling rate control. Our work prove that the nonlinear controller can achieve fast and accurate torque closed-loop torque control in various braking conditions compared with the hydrodynamic rate control retarder, and the potential of iris mechanism for adaptive control of hydrodynamic retarder is verified.


Author(s):  
Yan Yin ◽  
Jiusheng Bao ◽  
Jinge Liu ◽  
Chaoxun Guo ◽  
Tonggang Liu ◽  
...  

Disc brakes have been applied in various automobiles widely and their braking performance has vitally important effects on the safe operation of automobiles. Although numerous researches have been conducted to find out the influential law and mechanism of working condition parameters like braking pressure, initial braking speed, and interface temperature on braking performance of disc brakes, the influence of magnetic field is seldom taken into consideration. In this paper, based on the novel automotive frictional-magnetic compound disc brake, the influential law of magnetic field on braking performance was investigated deeply. First, braking simulation tests of disc brakes were carried out, and then dynamic variation laws and mechanisms of braking torque and interface temperature were discussed. Furthermore, some parameters including average braking torque, trend coefficient and fluctuation coefficient of braking torque, average temperature, maximum temperature rise, and the time corresponding to the maximum temperature rise were extracted to characterize the braking performance of disc brakes. Finally, the influential law and mechanism of excitation voltage on braking performance were analyzed through braking simulation tests and surface topography analysis of friction material. It is concluded that the performance of frictional-magnetic compound disc brake is prior to common brake. Magnetic field is greatly beneficial for improving the braking performance of frictional-magnetic compound disc brake.


Sign in / Sign up

Export Citation Format

Share Document