Design and Performance Benchmarking of Dual Gate Flexible Bilayer Graphene FETs

Author(s):  
Sunil Pathania ◽  
Palash Gupta ◽  
Rahul Kumar ◽  
Somesh Kumar
Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Saima Hasan ◽  
Abbas Z. Kouzani ◽  
M A Parvez Mahmud

This paper presents a simple and comprehensive model of a dual-gate graphene field effect transistor (FET). The quantum capacitance and surface potential dependence on the top-gate-to-source voltage were studied for monolayer and bilayer graphene channel by using equivalent circuit modeling. Additionally, the closed-form analytical equations for the drain current and drain-to-source voltage dependence on the drain current were investigated. The distribution of drain current with voltages in three regions (triode, unipolar saturation, and ambipolar) was plotted. The modeling results exhibited better output characteristics, transfer function, and transconductance behavior for GFET compared to FETs. The transconductance estimation as a function of gate voltage for different drain-to-source voltages depicted a proportional relationship; however, with the increase of gate voltage this value tended to decline. In the case of transit frequency response, a decrease in channel length resulted in an increase in transit frequency. The threshold voltage dependence on back-gate-source voltage for different dielectrics demonstrated an inverse relationship between the two. The analytical expressions and their implementation through graphical representation for a bilayer graphene channel will be extended to a multilayer channel in the future to improve the device performance.


Author(s):  
Nadja Yang Meng ◽  
Karthikeyan K

Performance benchmarking and performance measurement are the fundamental principles of performance enhancement in the business sector. For businesses to enhance their performance in the modern competitive world, it is fundamental to know how to measure the performance level in business that also incorporates telling how they will performance after a change has been made. In case a business improvement has been made, the performance processes have to be evaluated. Performance measurements are also fundamental in the process of doing comparisons of performance levels between corporations. The best practices within the industry are evaluated by the businesses with desirable levels of the kind of performance measures being conducted. In that regard, it is fundamental if similar businesses applied the same collection of performance metrics. In this paper, the NETIAS performance measurement framework will be applied to accomplish the mission of evaluating performances in business by producing generic collection of performance metrics, which businesses can utilize to compare and measure their organizational activities.


2015 ◽  
Vol 62 (12) ◽  
pp. 4333-4339 ◽  
Author(s):  
Jorge-Daniel Aguirre-Morales ◽  
Sebastien Fregonese ◽  
Chhandak Mukherjee ◽  
Cristell Maneux ◽  
Thomas Zimmer

2011 ◽  
Vol 1314 ◽  
Author(s):  
Changwook Jeong ◽  
Gerhard Klimeck ◽  
Mark Lundstrom

ABSTRACTWe use a state-of-the-art non-equilibrium quantum transport simulation code, NEMO-1D, to address the device physics and performance benchmarking of cross-plane superlattice Peltier coolers. Our findings show quantitatively how barriers in cross-plane superlattices degrade the electrical performance, i.e. power factor. The performance of an In0.53Ga0.47As/In0.52Al0.48As cross-plane SL Peltier cooler is lower than that of either a bulk In0.53Ga0.47As or bulk In0.52Al0.48As device, mainly due to quantum mechanical effects. We find that a cross-plane SL device has a Seebeck coefficient vs. conductance tradeoff that is no better than that of a bulk device. The effects of tunneling and phase coherence between multi barriers are examined. It is shown that tunneling, SL contacts, and coherency only produce oscillatory behavior of Seebeck coefficient vs. conductance without a significant gain in PF. The overall TE device performance is, therefore, a compromise between the enhanced Seebeck coefficient and degraded conductance.


Sign in / Sign up

Export Citation Format

Share Document