Impact of High-k spacer and Negative Capacitance on Double Gate Junctionless Transistor for Improved Short Channel Immunity and Reliability

Author(s):  
Hema Mehta ◽  
Harsupreet Kaur
2021 ◽  
Author(s):  
SHIKHA U S ◽  
Rekha K James ◽  
Jobymol Jacob ◽  
Anju Pradeep

Abstract The drain current improvement in a Negative Capacitance Double Gate Tunnel Field Effect Transistor (NC-DG TFET) with the help of Heterojunction (HJ) at the source-channel region is proposed and modeled in this paper. The gate oxide of the proposed TFET is a stacked configuration of high-k over low-k to improve the gate control without any lattice mismatches. Tangent Line Approximation (TLA) method is used here to model the drain current accurately. The model is validated by incorporating two dimensional simulation of DG-HJ TFET with one dimensional Landau-Khalatnikov (LK) equation. The model matches excellently with the device simulation results. The impact of stacked gate oxide topology is also studied in this paper by comparing the characteristics with unstacked gate oxide. Voltage amplification factor (Av), which is an important parameter in NC devices is also analyzed.


2006 ◽  
Vol 16 (01) ◽  
pp. 147-173
Author(s):  
YANGYUAN WANG ◽  
RU HUANG ◽  
JINFENG KANG ◽  
SHENGDONG ZHANG

In this paper field effect transistors (FETs) with new materials and new structures are discussed. A thermal robust HfN/HfO 2 gate stack, which can alleviate the confliction between high quality high k material and low EOT, is investigated. EOT of the gate stack can be scaled down to 0.65nm for MOS capacitor and 0.95nm for MOSFET with higher carrier mobility. A new dual metal gate/high k CMOS integration process was demonstrated based on a dummy HfN technique for better high k quality and metal gate integration. Several new double gate FETs are proposed and investigated, including vertical double gate device with an asymmetric graded lightly doped drain (AGLDD) for better short channel behavior, self-aligned electrically separable double gate device for dynamic threshold voltage operation, new 3-D CMOS inverter based on double gate structure and SOI substrate for compact configuration and new full-symmetric DGJFET for 10nm era with greatly relaxed requirement of silicon film thickness and device design simplification.


2021 ◽  
Author(s):  
Prashant Kumar ◽  
Munish Vashishath ◽  
Neeraj Gupta ◽  
Rashmi Gupta

Abstract This paper describes the impression of low-k/high-k dielectric on the performance of Double Gate Junction less (DG-JL) MOSFET. An analytical model of the threshold voltage of DG-JLFET has been presented. Poisson’s equation is solved using the parabolic approximation to find out the threshold voltage. The effect of high-k on various performance parameters of N-type DG-JLFET is explored. The comparative analysis has been carried out between conventional gate oxide, multi oxide and high-k oxide in terms of Drain Induced Barrier Lowering (DIBL), threshold voltage, figure of merit (ION/IOFF) and sub-threshold slope (SS). The high-k oxide has shown superlative performance as compared to others. The results are further analyzed for various device structures. The DG-JLFET with HfO2 exhibits excellent attainment by mitigating the Short Channel Effects (SCEs). The significant reduction in off current makes the device suitable for ultra-low power applications. There is a 61.9 % and 34.29% improvement in the figure of merit and sub-threshold slope in the proposed device as compared to other devices. The simulation of DG-JLFET is carried out using the Silvaco TCAD tool.


Sign in / Sign up

Export Citation Format

Share Document