A 168 dB high gain folded cascode operational amplifier for Delta-Sigma ADC

Author(s):  
Jing Kai ◽  
Yu Ningmei ◽  
Quan Xing
2013 ◽  
Vol 389 ◽  
pp. 573-578
Author(s):  
Ming Xin Song ◽  
Yue Li ◽  
Meng Meng Xu

A high-gain folded cascode operational amplifier is presented. Structure of folded cascode operational amplifier and manual calculations are discussed in detail. Folded cascode structure for the input stage is adopted. Folded cascode structure can increase the gain and the value of PSRR. Folded cascode structure can also allow self-compensation at the output. The operational amplifier is designed in 0.35μm CMOS process with 5V power supply. The operational amplifier has high-gain and work steadily. The results of SPICE simulations are shown that the operational amplifier achieved dc gain of 110dB with unity-gain bandwidth of 74.3MHz and phase margin of 54.4 degree.


2019 ◽  
Vol 8 (4) ◽  
pp. 1802-1808

The Front end read out circuits are major block in the implementation of Capacitive MEMS accelerometer. Front end read-out circuits comprises of preamplifier block containing folded cascode fully differential operational amplifier which are required for the signal conditioning of the signals received from the MEMS sensors. The op-amps are prime elements in design and implementation of mixed signal integrated circuits. The high gain and low power of the designed circuits helps in the designing of high precision IC’s for numerous application. Amongst the available topologies folded cascode topology plays vital role in the design and development of low power, high gain read out circuits. This paper illustrates the design and analysis of low power, high gain fully differential Folded Cascode Operational Amplifier for front end read out circuits. The designed op-amp exhibits a power consumption or dissipation of 92.14 μW and relatively higher open loop DC gain value with a value calculated at 81.33 dB by employing folded cascode topology. The UGB and Phase Margin for the selected design are 35 MHz and 83.60 respectively. The design operates at 5V power supply with the bias current of 12.11 μA. The circuit design and simulations have been implemented using 0.18 μm CMOS technology.


2015 ◽  
Vol 86 (7) ◽  
pp. 073102 ◽  
Author(s):  
J. E. Proctor ◽  
A. W. Smith ◽  
T. M. Jung ◽  
S. I. Woods

1980 ◽  
Vol 16 (6) ◽  
pp. 232 ◽  
Author(s):  
F. Krummenacher ◽  
J.-L. Zufferey

Author(s):  
Priti Gupta ◽  
Sanjay Kumar Jana

This paper deals with the designing of low-power transconductance–capacitance-based loop filter. The folded cascode-based operational transconductance amplifier (OTA) is designed in this paper with the help of quasi-floating bulk MOSFET that achieved the DC gain of 88.61[Formula: see text]dB, unity gain frequency of 97.86[Formula: see text]MHz and power consumption of 430.62[Formula: see text][Formula: see text]W. The proposed OTA is compared with the exiting OTA structure which showed 19.50% increase in DC gain and 15.11% reduction in power consumption. Further, the proposed OTA is used for the designing of transconductance–capacitance-based loop filter that has been operated at [Formula: see text]3[Formula: see text]dB cut-off frequency of 30.12[Formula: see text]MHz with the power consumption of 860.90[Formula: see text][Formula: see text]W at the supply voltage of [Formula: see text][Formula: see text]V. The transistor-level simulation has been done in 0.18[Formula: see text][Formula: see text]m CMOS process.


Sign in / Sign up

Export Citation Format

Share Document