Performance enhancement in high speed on-chip interconnect lines

Author(s):  
K Soorya Krishna ◽  
M. S. Bhat
Author(s):  
Yazhinian Sougoumar ◽  
Tamilselvan Sadasivam

<p>Network on Chip (NoC) router plays a vital role in System on Chip (SoC) applications. Routing operation is difficult to perform inside the SoC chip. Because it contains millions of chips in one single Integrated Circuit (IC), in which every chip consists of millions of transistors. Hence NoC router is designed to enable efficient routing operation in the SoC board.  NoC router consists of Network Interconnects (NI), Crossbar Switches, arbiters, a routing logic and buffers. Conventional unidirectional router is designed by priority based Round Robin Arbiter (RRA). It produces more delay to find the priority, which comes from various input channels and more area is consumed in unidirectional router. Also if any path failure occurs, it cannot route the data through other output channel. To overcome this problem, a novel bidirectional NoC router with and without contention is proposed, which offers less area and high speed than the existing unidirectional router. A novel bidirectional NoC router consists of round robin arbiter, Static RAM, switch allocator, virtual channel allocator and crossbar switch. The proposed bidirectional router can route the data from any input channel to each and every output channel. So it avoids conflict situation and path failure problems. If any path fails, immediately it will take the alternative path through the switch allocator. The proposed routing scheme is applied into the coarse grained architecture for improving the speed of the interconnection link between two processing elements. Simulation is performed by ModelSim6.3c and synthesis is carried out by Xilinx10.1.</p>


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


Author(s):  
Nilanjan Mukherjee ◽  
Artur Pogiel ◽  
Janusz Rajski ◽  
Jerzy Tyszer
Keyword(s):  

2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


Sign in / Sign up

Export Citation Format

Share Document