Impedance matching for the reduction of via induced signal reflection in on-chip high speed interconnect lines

Author(s):  
K Soorya Krishna ◽  
M. S. Bhat
Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 717
Author(s):  
Arash Ebrahimi Jarihani ◽  
Sahar Sarafi ◽  
Michael Koeberle ◽  
Johannes Sturm ◽  
Andrea M. Tonello

A high-speed full-duplex transceiver (FDT) over lossy on-chip interconnects is presented. The FDT employs a hybrid circuit to separate the inbound and outbound signals from each other and also performs echo-cancellation with the help of the main and the auxiliary drivers. A hybrid MOS device is utilized for impedance matching and conversion of the received voltage signal into a current signal for amplification. Moreover, a compensation capacitance ( C c ) is used at the output of the main driver to minimize the residual echo signal and achieve a higher data rate. The entire FDT architecture has been designed in TSMC 28 nm CMOS standard process with 0.9 V supply voltage. The performance results validate a 16 Gbps FD operation with a root-mean-square (RMS) jitter of 16.4 ps, and a power efficiency of 0.16 pJ/b/mm over a 5 mm on-chip interconnect without significant effect due to process-voltage-temperature (PVT) variations. To the best knowledge of the authors, this work shows the highest achievable full-duplex data rate, among the solutions reported in the literature to date, yet with low complexity, low layout area of 1581 μ m 2 and competitive power efficiency.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


Author(s):  
Nilanjan Mukherjee ◽  
Artur Pogiel ◽  
Janusz Rajski ◽  
Jerzy Tyszer
Keyword(s):  

2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


Sign in / Sign up

Export Citation Format

Share Document