Edge-Resolved Transient Imaging: Performance Analyses, Optimizations, and Simulations

Author(s):  
Charles Saunders ◽  
William Krska ◽  
Julian Tachella ◽  
Sheila W. Seidel ◽  
Joshua Rapp ◽  
...  
Author(s):  
C J R Sheppard

The confocal microscope is now widely used in both biomedical and industrial applications for imaging, in three dimensions, objects with appreciable depth. There are now a range of different microscopes on the market, which have adopted a variety of different designs. The aim of this paper is to explore the effects on imaging performance of design parameters including the method of scanning, the type of detector, and the size and shape of the confocal aperture.It is becoming apparent that there is no such thing as an ideal confocal microscope: all systems have limitations and the best compromise depends on what the microscope is used for and how it is used. The most important compromise at present is between image quality and speed of scanning, which is particularly apparent when imaging with very weak signals. If great speed is not of importance, then the fundamental limitation for fluorescence imaging is the detection of sufficient numbers of photons before the fluorochrome bleaches.


Author(s):  
R.P. Ferrier ◽  
S. McVitie

Type II magnetic contrast was first observed by Philibert and Tixier and relies on the change in the effective backscattering coefficient due to interaction of the scattered electrons within the specimen and the local magnetic induction (for a review see Tsuno). Depending on the tilt of the specimen and the position of the backscattered electron detector(s), contrast due to the presence of either or both domains and domain walls can be obtained; in the case of the latter, the standard geometry is for the specimen to be normal to the incident beam and the detectors are positioned above it and close to the optic axis. This is the geometry adopted in our studies, which used a JEOL 2000FX with a special split objective lens polepiece; this permitted the specimen to be in magnetic field-free space, the separate lens gaps above and below allowing good probe forming capabilities combined with excellent Lorentz imaging performance. A schematic diagram is shown in Fig. 1.


Author(s):  
H. Rose

The imaging performance of the light optical lens systems has reached such a degree of perfection that nowadays numerical apertures of about 1 can be utilized. Compared to this state of development the objective lenses of electron microscopes are rather poor allowing at most usable apertures somewhat smaller than 10-2 . This severe shortcoming is due to the unavoidable axial chromatic and spherical aberration of rotationally symmetric electron lenses employed so far in all electron microscopes.The resolution of such electron microscopes can only be improved by increasing the accelerating voltage which shortens the electron wave length. Unfortunately, this procedure is rather ineffective because the achievable gain in resolution is only proportional to λ1/4 for a fixed magnetic field strength determined by the magnetic saturation of the pole pieces. Moreover, increasing the acceleration voltage results in deleterious knock-on processes and in extreme difficulties to stabilize the high voltage. Last not least the cost increase exponentially with voltage.


2020 ◽  
Vol 2020 (14) ◽  
pp. 306-1-306-6
Author(s):  
Florian Schiffers ◽  
Lionel Fiske ◽  
Pablo Ruiz ◽  
Aggelos K. Katsaggelos ◽  
Oliver Cossairt

Imaging through scattering media finds applications in diverse fields from biomedicine to autonomous driving. However, interpreting the resulting images is difficult due to blur caused by the scattering of photons within the medium. Transient information, captured with fast temporal sensors, can be used to significantly improve the quality of images acquired in scattering conditions. Photon scattering, within a highly scattering media, is well modeled by the diffusion approximation of the Radiative Transport Equation (RTE). Its solution is easily derived which can be interpreted as a Spatio-Temporal Point Spread Function (STPSF). In this paper, we first discuss the properties of the ST-PSF and subsequently use this knowledge to simulate transient imaging through highly scattering media. We then propose a framework to invert the forward model, which assumes Poisson noise, to recover a noise-free, unblurred image by solving an optimization problem.


PIERS Online ◽  
2005 ◽  
Vol 1 (5) ◽  
pp. 543-546
Author(s):  
Ho-Jin Lee ◽  
Hyuk Park ◽  
Sung-Hyun Kim ◽  
Yong-Hoon Kim

Kerntechnik ◽  
2009 ◽  
Vol 74 (1-2) ◽  
pp. 42-46
Author(s):  
E. I. El-Madbouly ◽  
M. K. Shaat ◽  
A. M. Shokr ◽  
G. H. Elrefaei

Sign in / Sign up

Export Citation Format

Share Document