WOT based routing protocol for the home diagnostic instruments

Author(s):  
B.C. Blessing Solomon ◽  
Sharmila Mary Aral
1993 ◽  
Vol 13 (02) ◽  
pp. 96-105 ◽  
Author(s):  
H. Beeser ◽  
U. Becker ◽  
H. J. Kolde ◽  
E. Spanuth ◽  
P. Witt ◽  
...  

SummaryThe prothrombin time (PT), obtained from a fresh normal plasma pool (FPP), is the basis both for the establishment of the 100% activity (normal plasma) and for the ratio calculation used in the International Normalized Ratio (INR) according to the recommendations of the ICSH/ICTH (6). Today the PT of lyophilized normal plasma pools are successfully used as reference for the assessment of samples in proficiency studies. However, a lack of comparability is to be recognized. Therefore the Committee of Hematology of the German Association of Diagnostics’ and Diagnostic Instruments’ Manufacturers (VDGH) decided to produce a candidate reference plasma (VDGH Reference Plasma) which was calibrated against fresh normal plasma pools in an international study.The basic calibration was performed by using the same certified BCR thromboplastin (BCT/099) by all participants. The endpoint was determined manually and by using the coagulometer Schnitger-Gross. In additional testings each participant used his own routine thromboplastins and methods. Calculating the ratio [PT VDGH Reference Plasma (sec)/PT fresh normal plasma pool (sec)] the VDGH Reference Plasma showed a deviation from the average fresh normal plasma pool of 1.05 both with the BCT/099 and with all thromboplastins. There were obtained some statistical differences between “plain” and “combined’’ (added factor V and fibrinogen) thromboplastins. No statistical difference was found between the different endpoint measurement methods (manual, mechanical, optical).In spite of these statistical deviations the VDGH Reference Plasma can be used for the standardization of the PT-normal (100%) value with different ratios for plain (1.06) and combined (1.02) thromboplastins. The manufacturers will use this VDGH Reference Plasma for the calibration of their commercially available calibration plasmas, which allows the user of such a material to calculate a calibrated 100% PT value.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Sign in / Sign up

Export Citation Format

Share Document