Effects of Inverter Side Parameters on Stability and Dynamic Performance of HVDC Transmission Control System

Author(s):  
Juehao Xie ◽  
Chongru Liu ◽  
Jinyi Shen



Author(s):  
Qixin Zhu ◽  
Lei Xiong ◽  
Hongli Liu ◽  
Yonghong Zhu ◽  
Guoping Zhang

Background: The conventional method using one-degree-of-freedom (1DOF) controller for Permanent Magnet Synchronous Motor (PMSM) servo system has the trade-off problem between the dynamic performance and the robustness. Methods: In this paper, by using H∞ control theory, a novel robust two-degree-of-freedom (2DOF) controller has been proposed to improve the position control performance of PMSM servo system. Using robust control theory and 2DOF control theory, a H∞ robust position controller has been designed and discussed in detail. Results: The trade-off problem between the dynamic performance and robustness which exists in one-degree-of-freedom (1DOF) control can be dealt with by the application of 2DOF control theory. Then, through H∞ control theory, the design of robust position controller can be translated to H∞ robust standard design problem. Moreover, the control system with robust controller has been proved to be stable. Conclusion: Further simulation results demonstrate that compared with the conventional PID control, the designed control system has better robustness and attenuation to the disturbance of load impact.



2012 ◽  
Vol 546-547 ◽  
pp. 248-253
Author(s):  
Jing Jing Xiong ◽  
Zhen Feng ◽  
Jiao Yu Liu

In this paper, based on the principle of the speed and current double closed loop DC regulating system and the requirement of the static and dynamic performance, we calculate time constant of the regulator, select the structure of the regulator to calculate related parameter and then correct its parameters, and model system and simulation by using Simulink, analysis waveform and debug to find out the optimal parameters of the system regulator to guide the actual system design.



2014 ◽  
Vol 628 ◽  
pp. 186-189
Author(s):  
Meng Xiong Zeng ◽  
Jin Feng Zhao ◽  
Wen Ouyang

The control system performance requirement was divided into three parts. They were the stability, rapidity and accuracy. The time-frequency domain analysis in the requirements of three performance were measured through quantitative performance index. The mutual restriction of time-frequency performance and system characteristic parameters of normal second order was discussed. The correlation of system time-frequency performance index was established. The relationship between time-frequency performance indexes in standard two order system was extended to higher order system. The mutually constraining and time-frequency correlation between each performance index was obtained by analysis and calculation. The work had been done above had practical significance to reflect the system dynamic performance in different analytical domains.



2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.



2018 ◽  
Vol 13 (4) ◽  
pp. 1037-1056 ◽  
Author(s):  
Huthaifa AL-Khazraji ◽  
Colin Cole ◽  
William Guo

Purpose This paper aims to optimise the dynamic performance of production–inventory control systems in terms of minimisation variance ratio between the order rate and the consumption, and minimisation the integral of absolute error between the actual and the target level of inventory by incorporating the Pareto optimality into particle swarm optimisation (PSO). Design/method/approach The production–inventory control system is modelled and optimised via control theory and simulations. The dynamics of a production–inventory control system are modelled through continuous time differential equations and Laplace transformations. The simulation design is conducted by using the state–space model of the system. The results of multi-objective particle swarm optimisation (MOPSO) are compared with published results obtained from weighted genetic algorithm (WGA) optimisation. Findings The results obtained from the MOPSO optimisation process ensure that the performance is systematically better than the WGA in terms of reducing the order variability (bullwhip effect) and improving the inventory responsiveness (customer service level) under the same operational conditions. Research limitations/implications This research is limited to optimising the dynamics of a single product, single-retailer single-manufacturer process with zero desired inventory level. Originality/value PSO is widely used and popular in many industrial applications. This research shows a unique application of PSO in optimising the dynamic performance of production–inventory control systems.



2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Qiankai Qing ◽  
Wen Shi ◽  
Hai Li ◽  
Yuan Shao

This study investigates the dynamic performance and optimization of a typical discrete production control system under supply disruption and demand uncertainty. Two different types of uncertain demands, disrupted demand with a step change in demand and random demand, are considered. We find that, under demand disruption, the system’s dynamic performance indicators (the peak values of the order rate, production completion rate, and inventory) increase with the duration of supply disruption; however, they increase and decrease sequentially with the supply disruption start time. This change tendency differs from the finding that each kind of peak is independent of the supply disruption start time under no demand disruption. We also find that, under random demand, the dynamic performance indicators (Bullwhip and variance amplification of inventory relative to demand) increase with the disruption duration, but they have a decreasing tendency as demand variance increases. In order to design an adaptive system, we propose a genetic algorithm that minimizes the respective objective function on the system’s dynamic performance indicators via choosing appropriate system parameters. It is shown that the optimal parameter choices relate closely to the supply disruption start time and duration under disrupted demand and to the supply disruption duration under random demand.



2013 ◽  
Vol 380-384 ◽  
pp. 294-297 ◽  
Author(s):  
Xin Wei Li

A temperature rising control system and temperature maintaining control system were designed in according to time-variable and hysteretic nature of temperature change and limitation when traditional PID control deals with nonlinear systems. A new type of intelligent fuzzy controller combination of traditional PID control and fuzzy control was designed and applied in temperature maintaining control system. The simulation results show that the holding phase at elevated temperatures and temperature, the temperature curve has a high steady-state accuracy and dynamic performance in the period of temperature rising and maintaining, and the system and controller cause a better result.



Sign in / Sign up

Export Citation Format

Share Document