Predicting Alzheimer’s Disease at Low Cost Using Machine Learning

Author(s):  
Musfiquer Rhman ◽  
Farjana Rahman ◽  
Md. Mintu Hossain ◽  
Umma Habiba Emu ◽  
Khadija Akter ◽  
...  
2016 ◽  
Vol 55 (01) ◽  
pp. 42-49 ◽  
Author(s):  
J. M. Guerrero ◽  
M. Rincón ◽  
H. Peraita ◽  
R. Martínez-Tomás

SummaryBackground: Early detection of Alzheimer’s disease (AD) has become one of the principal focuses of research in medicine, particularly when the disease is incipient or even prodromic, because treatments are more effective in these stages. Lexical-semantic- conceptual deficit (LSCD) in the oral definitions of semantic categories for basic objects is an important early indicator in the evaluation of the cognitive state of patients. Objectives: The objective of this research is to define an economic procedure for cognitive impairment (CI) diagnosis, which may be associated with early stages of AD, by analysing cognitive alterations affecting declarative semantic memory. Because of its low cost, it could be used for routine clinical evaluations or screenings, leading to more expensive and selective tests that confirm or rule out the disease accurately. It should necessarily be an explanatory procedure, which would allow us to study the evolution of the disease in relation to CI, the irregularities in different semantic categories, and other neurodegenerative diseases. On the basis of these requirements, we hypothesise that Bayesian networks (BNs) are the most appropriate tool for this purpose. Methods: We have developed a BN for CI diagnosis in mild and moderate AD patients by analysing the oral production of semantic features. The BN causal model represents LSCD in certain semantic categories, both of living things (dog, pine, and apple) and non-living things (chair, car, and trousers), as symptoms of CI. The model structure, the qualitative part of the model, uses domain knowledge obtained from psychology experts and epidemiological studies. Further, the model parameters, the quantitative part of the model, are learnt automatically from epidemiological studies and Peraita and Grasso’s linguistic corpus of oral definitions. This corpus was prepared with an incidental sampling and included the analysis of the oral linguistic production of 81 participants (42 cognitively healthy elderly people and 39 mild and moderate AD patients) from Madrid region’s hospitals. Experienced neurologists diagnosed these cases following the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association (NINCDSADRDA)’s Alzheimer’s criteria, performing, among other explorations and tests, a minimum neuropsychological exploration that included the Mini-Mental State Examination test. Results: BN’s classification performance is remarkable compared with other machine learning methods, achieving 91% accuracy and 94% precision in mild and moderate AD patients. Apart from this, the BN model facilitates the explanation of the reasoning process and the validation of the conclusions and allows the study of uncommon declarative semantic memory impairments. Conclusions: Our method is able to analyse LSCD in a wide set of semantic categories throughout the progression of CI, being a valuable first screening method in AD diagnosis in its early stages. Because of its low cost, it can be used for routine clinical evaluations or screenings to detect AD in its early stages. Besides, due to its knowledge-based structure, it can be easily extended to provide an explanation of the diagnosis and to the study of other neurodegenerative diseases. Further, this is a key advantage of BNs over other machine learning methods with similar performance: it is a recognisable and explanatory model that allows one to study irregularities in different semantic categories.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 778
Author(s):  
Nitsa J. Herzog ◽  
George D. Magoulas

Early identification of degenerative processes in the human brain is considered essential for providing proper care and treatment. This may involve detecting structural and functional cerebral changes such as changes in the degree of asymmetry between the left and right hemispheres. Changes can be detected by computational algorithms and used for the early diagnosis of dementia and its stages (amnestic early mild cognitive impairment (EMCI), Alzheimer’s Disease (AD)), and can help to monitor the progress of the disease. In this vein, the paper proposes a data processing pipeline that can be implemented on commodity hardware. It uses features of brain asymmetries, extracted from MRI of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, for the analysis of structural changes, and machine learning classification of the pathology. The experiments provide promising results, distinguishing between subjects with normal cognition (NC) and patients with early or progressive dementia. Supervised machine learning algorithms and convolutional neural networks tested are reaching an accuracy of 92.5% and 75.0% for NC vs. EMCI, and 93.0% and 90.5% for NC vs. AD, respectively. The proposed pipeline offers a promising low-cost alternative for the classification of dementia and can be potentially useful to other brain degenerative disorders that are accompanied by changes in the brain asymmetries.


2016 ◽  
Vol 13 (5) ◽  
pp. 498-508 ◽  
Author(s):  
V. Vigneron ◽  
A. Kodewitz ◽  
A. M. Tome ◽  
S. Lelandais ◽  
E. Lang

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1071
Author(s):  
Lucia Billeci ◽  
Asia Badolato ◽  
Lorenzo Bachi ◽  
Alessandro Tonacci

Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.


Author(s):  
M. Tanveer ◽  
B. Richhariya ◽  
R. U. Khan ◽  
A. H. Rashid ◽  
P. Khanna ◽  
...  

Author(s):  
Adwait Patil

Abstract: Alzheimer’s disease is one of the neurodegenerative disorders. It initially starts with innocuous symptoms but gradually becomes severe. This disease is so dangerous because there is no treatment, the disease is detected but typically at a later stage. So it is important to detect Alzheimer at an early stage to counter the disease and for a probable recovery for the patient. There are various approaches currently used to detect symptoms of Alzheimer’s disease (AD) at an early stage. The fuzzy system approach is not widely used as it heavily depends on expert knowledge but is quite efficient in detecting AD as it provides a mathematical foundation for interpreting the human cognitive processes. Another more accurate and widely accepted approach is the machine learning detection of AD stages which uses machine learning algorithms like Support Vector Machines (SVMs) , Decision Tree , Random Forests to detect the stage depending on the data provided. The final approach is the Deep Learning approach using multi-modal data that combines image , genetic data and patient data using deep models and then uses the concatenated data to detect the AD stage more efficiently; this method is obscure as it requires huge volumes of data. This paper elaborates on all the three approaches and provides a comparative study about them and which method is more efficient for AD detection. Keywords: Alzheimer’s Disease (AD), Fuzzy System , Machine Learning , Deep Learning , Multimodal data


Sign in / Sign up

Export Citation Format

Share Document