A New Microsensor System for Plant Root Zone Monitoring

Author(s):  
Chang-Soo Kim ◽  
S. Sathyan ◽  
D.M. Porterfield
Keyword(s):  
2018 ◽  
Vol 22 (10) ◽  
pp. 5427-5444 ◽  
Author(s):  
Benjamin Mary ◽  
Luca Peruzzo ◽  
Jacopo Boaga ◽  
Myriam Schmutz ◽  
Yuxin Wu ◽  
...  

Abstract. The investigation of plant roots is inherently difficult and often neglected. Being out of sight, roots are often out of mind. Nevertheless, roots play a key role in the exchange of mass and energy between soil and the atmosphere, in addition to the many practical applications in agriculture. In this paper, we propose a method for roots imaging based on the joint use of two electrical noninvasive methods: electrical resistivity tomography (ERT) and mise-à-la-masse (MALM). The approach is based on the key assumption that the plant root system acts as an electrically conductive body, so that injecting electrical current into the plant stem will ultimately result in the injection of current into the subsoil through the root system, and particularly through the root terminations via hair roots. Evidence from field data, showing that voltage distribution is very different whether current is injected into the tree stem or in the ground, strongly supports this hypothesis. The proposed procedure involves a stepwise inversion of both ERT and MALM data that ultimately leads to the identification of electrical resistivity (ER) distribution and of the current injection root distribution in the three-dimensional soil space. This, in turn, is a proxy to the active (hair) root density in the ground. We tested the proposed procedure on synthetic data and, more importantly, on field data collected in a vineyard, where the estimated depth of the root zone proved to be in agreement with literature on similar crops. The proposed noninvasive approach is a step forward towards a better quantification of root structure and functioning.


Nitrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 26-42
Author(s):  
Jacynthe Dessureault-Rompré ◽  
Alexis Gloutney ◽  
Jean Caron

Few conservation strategies have been applied to cultivated peatland. This field study over one growth cycle of Lactuca sativa examined the effect of plant-based, high-C/N-ratio amendments in a real farming situation on peatland. Plant Root Simulator (PRS®) probes were used directly in the field to assess the impacts of incorporating Miscanthus x giganteus straw and Salix miyabeana chips on nutrient availability for lettuce. The results showed that lettuce yield decreased by 35% in the miscanthus straw treatment and by 14% in the willow chip treatment. In addition, the nitrogen flux rate was severely reduced during crop growth (75% reduction) and the plant N uptake index was much lower in the amended treatments than in the control. The phosphorus supply rate was also significantly lower (24% reduction) in the willow treatment. The influence of sampling zone was significant as well, with most macro-nutrients being depleted in the root zone and most micro-nutrients being mobilized. Additional work is needed to optimize the proposed conservation strategy and investigate the effects of consecutive years of soil amendment on different vegetable crops and in different types of cultivated peatlands to confirm and generalize the findings of this study. Future field studies should also explore the long-term carbon dynamics under plant-based, high-C/N-ratio amendments to determine if they can offset annual C losses.


2020 ◽  
Vol 8 (2) ◽  
pp. 131-138
Author(s):  
Muhammad Yousaf Ali

The biggest responsibility of agriculture department is to produce food and cloth for huge population using the resource getting limited day by day. Water scarcity is most threatening among these limiting factors. New techniques are being developed day by day to utilize the water efficiently. Application of water only in the plant root zone will be one of the water saving technique to grow crops. This will control the losses due to evaporation and leaching. Irrigation to soil does not control the climate variables and precipitation cannot be substituted to irrigation. Sprinkler irrigation could be one of the way to utilize the water efficiently by in time application and reducing the losses of leaching and evaporation along with amelioration of micro climate of the crop. Canals and tube well water is conventionally given to crop through flood irrigation. These fields are in direct threat of evaporation and leaching resulting in excess water losses and damaging the soil quality. The study was designed taking cotton as experimental crop to calculate comparisons in plant growth parameters and yields along with water saving ability of different irrigation system. Maximum yield was obtained from sprinkler irrigation and water was saved under drip irrigation system.


1998 ◽  
Author(s):  
W Bond

Measurements in and just below the plant root zone, using principles of soil physics, can be used to estimate recharge. This booklet describes the Zero Flux Plane Method, Methods Based on Darchy's law, and Lysimetry for making such estimates. The work presents the basic concepts of soil water physics that will be referred to in this and other booklets in the series. Another method, the Soil Water Flux Meter, is discussed briefly, but as this is not sufficiently well developed for routine use readers are referred elsewhere for full details. All these methods require that consideration be given to interpolation over time and spatial extrapolation or averaging. A brief discussion of this is given.


2019 ◽  
Vol 65 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Michaela Piliarová ◽  
Katarína Ondreičková ◽  
Martina Hudcovicová ◽  
Daniel Mihálik ◽  
Ján Kraic

Abstract Arbuscular mycorrhizal fungi living in the soil closely collaborate with plants in their root zone and play very important role in their evolution. Their symbiosis stimulates plant growth and resistance to different environmental stresses. Plant root system, extended by mycelium of arbuscular mycorrhizal fungi, has better capability to reach the water and dissolved nutrients from a much larger volume of soil. This could solve the problem of imminent depletion of phosphate stock, affect plant fertilisation, and contribute to sustainable production of foods, feeds, biofuel, and raw materials. Expanded plant root systems reduce erosion of soil, improve soil quality, and extend the diversity of soil microflora. On the other hand, symbiosis with plants affects species diversity of arbuscular mycorrhizal fungi and increased plant diversity supports diversity of fungi. This review summarizes the importance of arbuscular mycorrhizal fungi in relation to beneficial potential of their symbiosis with plants, and their function in the ecosystem.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1011C-1011
Author(s):  
Said Ennahli ◽  
Sorkel Kadir

Partial root-zone drying (PRD) irrigation management has been developed for grapevines as an efficient method to control excessive growth, improve fruit quality, and save water without compromising yield. PRD is based on knowledge of the mechanisms that control transpiration and requires slow dehydration of half of the plant root system, whereas the other half is irrigated. A study was conducted in the field to evaluate the effect of PRD on physiological characteristics, growth, yield, and fruit quality of three grape cultivars. The wetting and drying cycle of the PRD-vine root system is alternated on a 10–14 day schedule. Significant reduction in vigor was observed in treated plants compared with control plants. Root biomass was not affected, but fine roots significantly increased in PRD-treated plants, compared with that of the control. This contributed to the ability of PRD-treated plants to maintain leaf water potential similar to that of the control. Stomatal conductance of PRD plants was significantly reduced when compared with that of the control plants. Abscisic acid (ABA) concentration in leaves of PRD vines increased significantly when compared to the control vines. PRD treatment significantly increased yield and fruit quality when compared with the control treatment. PRD significantly increased water use efficiency (pruning weight per unit of water applied). This study shows that PRD stimulated ABA production in the drying roots, which caused reduction in stomatal conductance and transpiration rate, leading to a substantial reduction in vegetative growth without compromising yield and fruit quality.


Author(s):  
Yongzheng Tian ◽  
Jianhua Si ◽  
Qi Feng ◽  
Shengkui Cao

Plant root water uptake is a key way to transfer soil water to the atmosphere. It is an important part of the research on water transforming patterns in the SPAC (Soil-Plant-Air Continuum). So understanding the water absorption patterns of plant root system is a base to recognize the SPAC. Recently there are many studies on the water absorption patterns of plant root system. However, the researched plants are mostly crops and the main researched areas are regions with adequate precipitation. There are only a few studies on the water absorption of natural plants in extreme arid desert regions. This paper studied the root water absorption patterns of Populus euphratica and established the corresponding mathematical model based on the data of root density and soil water dynamics in root zone in desert riparian forest in extreme arid region. The finite difference method was used to discretize the soil water movement equation with evaporation boundary conditions. Numerical simulation analysis of soil water movement in root zone of Populus euphratica showed that the simulated values were consistent with the measurement values with 92-98% precision. This work provides a theoretical basis for the study of water movement in the SPAC.


2019 ◽  
Vol 167 ◽  
pp. 105058
Author(s):  
Peng-Fei Zhao ◽  
Yong-Qian Wang ◽  
Shi-Xian Yan ◽  
Li-Feng Fan ◽  
Zi-Yang Wang ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Amos K. Quaye ◽  
Timothy A. Volk ◽  
Jeff J. Schoenau

The seasonal variations in soil nutrient supply and bioavailability were assessed in a willow biomass crop (Salix miyabeana, SX64) treated with 150 and 200 kg available N ha−1of commercial fertilizer (CF), biosolid compost (BC), dairy manure (DM), and control (CT0) at Delhi, NY. Plant root simulator probes were used to measure nutrient supply (inside) and bioavailability (outside) of root exclusion cylinders. Measurements were made in September 2008 and May, August, and October of 2009. Soil moisture content (θd)and foliar nutrient concentrations were also determined. The BC treatments increased soil P supply more than CF and CT0. The supply ofNH4+and K in the soil increased in August but their bioavailability increased in May and October. SoilNO3-and P supply and bioavailability were both high in May. Foliar N and K concentrations were significantly high in May and low in August which could be due to dilution effect caused by increased soil moisture foliar dry weight. Foliar P concentrations increased in September and October. The observed higher soilNO3-mineralization and plant uptake in May suggest that in high soilNO3-conditions willow biomass crops can level and minimize leaching out of the root zone into groundwater.


Sign in / Sign up

Export Citation Format

Share Document